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Abstract

Wage insurance provides income support to displaced workers who find
reemployment at a lower wage. We analyze wage insurance in the context
of the U.S. Trade Adjustment Assistance (TAA) program by merging
linked employer-employee Census data to TAA petitions and leveraging a
discontinuity in eligibility based on worker age. Wage insurance eligibility
increases short-run employment probabilities and leads to higher long-run
cumulative earnings. We find shorter non-employment durations largely
drive increased long-term earnings among workers eligible for wage
insurance. Our results are quantitatively consistent with a standard
non-stationary partial equilibrium search model. The program is
self-financing even under conservative assumptions.
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1 Introduction

Workers who lose their jobs often experience substantial earnings losses (Jacobson et al.

1993; Stevens 1997; Kletzer 1998; Couch and Placzek 2010; Schmieder and von Wachter

2010; Davis and von Wachter 2011; Flaaen et al. 2019; Schmieder et al. 2023), persistent

non-employment (Ruhm 1991; Chan and Stevens 2001), and lower wealth (Stevens and

Moulton 2013). While standard policies like unemployment insurance temporarily cushion

the impacts of job loss, and retraining can help some workers re-skill, in many cases these

policies have proven insufficient at compensating workers whose livelihoods are lost.1 In fact,

studies show a causal link between job displacement and broader societal problems, including

lower educational attainment of children (Oreopoulos et al. 2008; Rege et al. 2011; Stevens

and Schaller 2011), political polarization (Autor et al. 2020), and higher mortality (Sullivan

and Von Wachter 2009; Pierce and Schott 2020). Given the likelihood of ongoing labor market

disruption from emerging technologies including artificial intelligence and decarbonization,

developing alternative policies to address job displacement is a key goal for policymakers.

In this paper, we study the effects of an innovative policy known as wage insurance,

which temporarily subsidizes the earnings of displaced workers whose new job pays less

than their old one. Because the subsidy amount is proportional to the earnings decline,

the policy is designed to shorten unemployment durations by making reemployment more

attractive, particularly in lower-wage jobs. Wage insurance therefore aims to avoid the

negative consequences of long unemployment durations documented in the prior literature

(Krueger and Mueller 2011; Kroft et al. 2013; Schmieder et al. 2016) and supports workers

for whom training is ineffective, infeasible, or unavailable.2 However, the subsidy may also

lead to worse job matches and persistently low wages after benefits expire. These potentially

countervailing effects call for empirical assessment, but evidence on the impact of wage

insurance programs remains scarce (Cahuc 2018).

We estimate the causal effects of wage insurance on displaced workers’ employment

and earnings in the U.S. using linked administrative data and a regression discontinuity

design. We study the wage insurance provisions of the Trade Adjustment Assistance

(TAA) program, which compensates workers who lose employment as a result of

international trade. Displaced workers in the traditional TAA program participate in

1For example, the adverse effects of Chinese import competition on U.S. workers were more consequential
than many economists once thought, revealing the shortcomings of existing policies in overcoming adjustment
frictions and compensating losses (Autor et al. 2013, 2014, 2016; Pierce and Schott 2016).

2In a meta-analysis, Card et al. (2018) find that the returns to active labor market policies are weaker for
older workers, consistent with concave earnings profiles in age and experience found throughout the literature
(Heckman et al. 2006). Retraining programs also require both household liquidity to cover expenses during
training and foresight about the sectors and geographic locations of future job growth.
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mandatory job training and receive extended unemployment insurance payments. Workers

age 50 or older are additionally eligible for an alternative program known as Reemployment

Trade Adjustment Assistance (RTAA), which does not require job training and instead

provides wage insurance, paying up to half of the difference between the worker’s pre- and

post-separation wages for up to two years. To implement this analysis, we merge

administrative data on TAA petitions with the U.S. Census Bureau’s Longitudinal

Employer-Household Dynamics (LEHD) dataset to measure employment and earnings

outcomes for 76,500 workers at approximately 1,000 TAA-petitioning firms.

Our regression discontinuity (RD) design compares outcomes for workers just above and

below the age-50 eligibility cutoff, finding substantial increases in employment and earnings

for wage insurance-eligible workers. However, this RD estimate may understate the true

effect of wage insurance eligibility because other programs’ eligibility rules also change at

age 50, most notably disability insurance (Chen and van der Klaauw 2008; Deshpande et al.

2021; Carey et al. 2022). We therefore also estimate a difference-in-discontinuities (D-RD)

to net out the negative effects of these other programs, using a sample of displaced workers

whose petitions for TAA were denied by the Department of Labor. We present evidence that

this denied sample is a credible counterfactual for the TAA-certified sample and note that

if workers displaced from certified firms have weaker labor market opportunities than those

displaced from denied firms, our D-RD estimate will be understated.3 The effects of wage

insurance eligibility estimated using this D-RD approach are qualitatively similar to the RD

results but larger in magnitude.

We find that wage insurance eligibility substantially increases workers’ employment

probabilities and cumulative earnings.4 Wage insurance eligibility increases employment

probabilities by 8 to 17 percentage points during the two years following displacement before

fading to zero after four years. Program eligibility also increases earnings replacement rates

by 10 percentage points and cumulative earnings by over $18,000 during the four years

following displacement (not including the value of the subsidies); this is a large effect relative

to the 4-year average cumulative earnings of $68,630 among marginally ineligible workers.

These earnings effects are largely driven by shorter non-employment durations among wage

insurance eligible workers; wage insurance eligibility reduces the initial non-employment spell

duration by approximately 1 calendar quarter and reduces the total time out of employment

3We show (1) observable balance at the age-50 discontinuity in both samples, (2) similar observable
characteristics across both samples, and (3) similar effects at age 55 (when only disability insurance eligibility
varies by age) in both samples.

4We focus on intent-to-treat (ITT) estimates because wage insurance eligibility affects workers’ incentives
and therefore their search behavior irrespective of whether their new job makes them eligible for subsidy
payments. As a result, eligibility for wage insurance can affect outcomes even for workers who do not receive
subsidy payments, making eligibility an invalid instrument, as in Jones (2015). See Section 5 for details.
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across all non-employment spells by 1.26 quarters over 4 years.

While wage insurance eligibility leads workers to return to work more quickly, we find

little evidence of effects on other employment outcomes. Proponents of wage insurance

hoped that it might encourage workers to leave declining industries and shift into

expanding industries, with the wage insurance subsidy facilitating this transition while

workers accumulate on-the-job experience and industry-specific human capital (U.S. Trade

Deficit Review Commission 2000; Kletzer and Litan 2001; U.S. White House 2016).

Although the majority of displaced workers in our sample switch industries, we find no

difference in industry switching rates between eligible and ineligible workers. We also do

not find effects on the worker’s number of unique employers, geographic mobility, job

quality (measured by firm age, firm size, and earnings growth rates), or the length of the

employment spell at the first job after displacement. The lack of responsiveness along these

forward-looking margins may reflect the fact that our regression-discontinuity approach

identifies the effects of wage insurance eligibility displaced at age 50, a relatively late point

in many careers.

Our findings are robust to a variety of alternative approaches and pass standard

specification checks. The density of the age distribution at separation is smooth at the

age-50 eligibility cutoff, which is expected given that most TAA applicants separate in

mass layoffs. Observables are balanced across the age-50 eligibility threshold, including

pre-displacement earnings levels and earnings growth.5 Placebo tests using an age cutoff of

55 provide further empirical validation. The results are robust to varying the particulars of

the regression discontinuity estimator including the functional form for local regression,

kernel type, bandwidth, controlling for baseline covariates, and clustering standard errors

by petition. We also find very similar results when addressing partial treatment of workers

who turn 50 shortly after displacement using either a one-sided “donut RD” approach or a

regression-kink design. Finally, the results are robust to relaxing our sample restrictions.

While the program we study is part of TAA, covered workers span a wide range of

industries and locations, including the service sector, in part because the program applies

to upstream and downstream firms. We find no evidence for heterogeneity in effects across

locations with high vs. low unemployment rates, which suggests we are not simply finding

large favorable effects of wage insurance because displaced workers in our sample are in

particularly distressed labor markets. We also find no evidence for heterogeneity in effects

by gender, race, or education level, suggesting that the policy is similarly effective across

these groups.

5Observables are also balanced in the difference-in-discontinuities design comparing workers whose layoffs
were certified vs. denied for TAA.

3



We interpret our empirical findings through the lens of a non-stationary partial

equilibrium search model with endogenous search effort and duration dependence. In this

model, workers receive a wage insurance subsidy if they obtain reemployment at a wage

below their pre-displacement wage. Eligibility affects search behavior in two ways: wage

insurance eligible workers lower their reservation wages (since the subsidy makes lower

wages more attractive) and increase their search effort (since the subsidy increases the

expected marginal value of obtaining a job offer). By changing job search behavior along

both of these margins, wage insurance eligibility reduces non-employment durations,

helping workers avoid the potentially negative effects of duration-dependent wage offers.

The calibrated model delivers quantitative predictions that are consistent with our D-RD

estimates. Moreover, varying parameters of UI generosity suggests that our results do not

depend on the outside option offered by the TAA program. Model simulations also imply

that wage insurance is likely to be particularly effective in settings with negative duration

dependence.

Using our regression estimates, we calculate the marginal value of public funds (MVPF)

as developed by Hendren (2016) and Hendren and Sprung-Keyser (2020). The MVPF is the

ratio of willingness to pay for wage insurance benefits to net government costs, defined as

program costs less savings to government budgets (“fiscal externalities”). We find the net

costs to the government are negative, as fiscal externalities (such as reduced unemployment

insurance payments and increased tax revenues on higher earnings) exceed wage insurance

payments, even under conservative assumptions.6 However, this calculation assumes partial

equilibrium; if the program were scaled up to cover a much larger share of displaced workers,

general equilibrium effects would become relevant.7

Our paper contributes to several literatures. Despite persistent interest in wage

insurance since the 1980s, our study is the first to estimate the causal impacts of wage

insurance in the U.S. labor market.8,9 We are aware of evaluations of only two prior wage

6This “negative cost” result is consistent with Kostøl and Mogstad (2014) who studied a Norwegian
reform that paid out disability benefits upon reemployment, and similarly found that the tax revenue levied
on program-induced labor force participation outweighed fiscal costs of the reform.

7Davidson and Woodbury (1995) and Lise et al. (2004) use equilibrium search models to quantify various
crowd-out factors, while Crépon et al. (2013) and Gravoueille (2022) use reforms and randomized trials to
study labor-market level interventions in France.

8The earliest wage insurance proposal we have uncovered appears in Lawrence et al. (1984). Many
subsequent proposals recommended a similar structure to the one we study in terms of the subsidy rate,
benefit duration, and maximum benefit amount, and some would extend the policy to a much broader set
of workers. Examples include Lawrence and Litan (1986), Kletzer and Litan (2001); Brainard et al. (2005);
LaLonde (2007); Burtless (2007); and Litan (2015). See Wandner (2016) for a detailed history of wage
insurance proposals in the U.S. and legislative history of RTAA.

9As part of an evaluation of the TAA Program commissioned by the U.S. Department of Labor, Schochet
et al. (2012) implement a propensity score matching analysis of the effects of the Alternative Trade
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insurance programs in other countries, both of which were smaller than RTAA and

included important barriers to participation. Bloom et al. (2001) examined Canada’s

Earnings Supplement Project, which provided two years of wage insurance with a 75

percent subsidy rate to a random sample of workers in five Canadian cities. The measured

effects of wage insurance were modest, but the study had a small sample size and low rates

of program take-up among eligible participants, partly due to the requirement that workers

find a full-time job within 26 weeks.10 Stephan et al. (2016) use an information

intervention to study the German Entgeltsicherung (EGS) program, which offered wage

insurance with a subsidy rate of 50 percent in the first year and 30 percent in the second

year to displaced workers age 50 or over. While the information intervention increased

awareness of the program, take-up increased only slightly and the level of participation

remained low, perhaps because of the requirement to apply for the program before taking

up the new job. These issues led to noisy and wide-ranging estimates of the program’s

impact on employment outcomes.11

An alternative policy designed to reduce unemployment durations is the

reemployment bonus, in which benefit payments are fixed and do not depend upon

reemployment wages. A large literature evaluates the effects of experiments providing

reemployment bonuses to workers who quickly found and maintained a job for a specified

period.12 Our estimated magnitudes compare favorably to these experiments; the cash

bonuses were an order of magnitude smaller than average wage insurance payments and,

correspondingly, the positive effects on employment were much smaller than our estimates.

While wage insurance and reemployment bonuses both subsidize reemployment, the two

programs are distinct; by increasing insurance payments when reemployment wages are

lower, wage insurance amplifies the incentive to quickly find a job.13

More broadly, our paper contributes new evidence to the literature on active labor

Adjustment Assistance (ATAA) wage insurance program, which preceded the RTAA program we study. Yet,
because they define treatment partly based upon post-displacement employment outcomes, they conclude
“... we have serious doubts about the quality of the comparison group matches for the ATAA subgroup
analysis.”

10Based on a follow-up survey, Bloom et al. (2001) conclude that “...the main barrier to supplement use
was an inability to find suitable new full-time work in time.”

11A suite of closely related papers (written in German) use a difference-in-differences approach to study
the EGS program (alongside other German active labor market policies) (Ammermüller et al., 2006; Brussig
et al., 2006; Zwick, 2006). These papers find minimal effects of program eligibility and use surveys and
interviews to highlight barriers to participation including job placement agencies’ lack of engagement with
programs for older workers, the requirement to receive approval prior to starting the job, and difficulty
gaining approval in jobs not covered by collective bargaining contracts.

12Prominent examples include Woodbury and Spiegelman (1987), Corson (1989), Lise et al. (2004), and
O’Leary et al. (2005). Decker and O’Leary (1995) and Meyer (1995) synthesize results across studies.

13See Davidson and Woodbury (1995) for an investigation of the parameters under which reemployment
bonuses and wage subsidies yield similar outcomes in the context of a standard search framework.
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market policies, showing that wage insurance is a promising option for supporting displaced

workers. The employment effects we document are larger and more immediate than the

average effects of training, job search assistance, or employer subsidy programs documented

in Card et al. (2018). Our estimated effects of wage insurance are also larger than those of

partial UI, which provides reduced unemployment benefits to workers in low-paying, part-

time jobs (Boeri and Cahuc 2023). Partial UI is intended to encourage quick reemployment

in temporary work, unlike wage insurance which is intended to lead to a new permanent

position.

Finally, our study also relates to the literature on optimal targeting and tagging

(Akerlof 1978; Currie and Gahvari 2008; Alcott et al. 2015; Kroft and Notowidigdo 2016;

Lieber and Lockwood 2019). By construction, wage insurance targets people who

experience large earnings losses. Although this subsidy structure may lead to moral hazard

in which people take less-demanding, lower-paying jobs, in practice we find no evidence for

lower reemployment wages. Other features of the wage insurance program we study also

steer payments to displaced workers with reduced labor market opportunities. Restricting

eligibility to workers over 50 was conceived as way to tag workers for whom retraining

might be less effective and more socially costly (U.S. Trade Deficit Review Commission

2000). Workers eligible for wage insurance under TAA are heavily concentrated in

particular locations (see Appendix Figure A.2). Since the program speeds reemployment

without differential impacts on mobility, our results suggest that place-based targeting of

wage insurance may be effective (Bartik 2020).

The paper proceeds as follows. Section 2 provides background on TAA and the

associated wage insurance program. Section 3 develops a pedagogical model of job search

with wage insurance to help build intuition. Section 4 describes the TAA petition data and

LEHD, and also presents descriptive statistics. Section 5 details our identification strategy,

and Section 6 presents our main results. We empirically examine mechanisms in Section 7

and perform quantitative analysis in a realistic non-stationary search model in Section 8.

Section 9 evaluates benefits and costs based on the marginal value of public funds, and

Section 10 concludes and discusses areas for future research.

2 Institutional Setting

This section briefly summarizes the key features of Trade Adjustment Assistance (TAA)

and its wage insurance program, Reemployment Trade Adjustment Assistance (RTAA). We

provide additional details in Appendix A, including citations to relevant legislation and

regulations, as well as details on how wage insurance payment amounts are verified and
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collected.

2.1 Trade Adjustment Assistance

The U.S. Trade Adjustment Assistance (TAA) program was in place from 1962 to 2022

(with substantial amendments in 1974), providing benefits to workers “who lose their jobs

or whose hours of work and wages are reduced as a result of increased imports.”14 The

program was designed to compensate workers who are negatively affected by trade

liberalization and to help maintain support for continued reductions in trade barriers. The

central program benefits cover expenses for qualified retraining programs and provide

extended unemployment insurance (UI) benefits for up to three years.15 Training is

required in order to maintain extended UI benefits. To qualify for TAA, displaced workers

or their representatives must petition the Department of Labor to certify that their

displacement resulted from foreign competition. TAA petitions are assigned to case

investigators tasked with determining whether layoffs were linked to: (1) a direct reduction

in sales from import competition; (2) a shift in production to outside the U.S.; (3) being an

upstream supplier or downstream client of firms affected by (1) or (2). While investigators

have subpoena power to request confidential information to inform their decision to

“certify” (approve) a petition for TAA, considerable discretion is required to disentangle

the firm’s trade exposure from contemporaneous technology or automation shocks which

may also result in separations (Hyman 2018). Since TAA’s inception, 60.6 percent of

petitions have been certified, with higher rates in more recent years.16 Eligibility is

determined at the plant level, so all workers displaced from a certified plant during the

relevant time window are eligible for TAA benefits. As discussed below, this plant-level

certification process enables us to identify TAA-eligible workers in Census Bureau data.

Aggregate spending on TAA is low relative to other social insurance programs, with less

than $1 billion expended annually on training, extended UI payments, and other benefits (see

Appendix A and Figure A.1). The small size of the program is due to relatively few workers

receiving benefits, rather than low spending per worker. In 2021, $441 million was spent

on 21,286 participants. After the Great Recession, around 200,000 workers received services

in both 2010 and 2011, though aggregate annual spending still did not surpass $1 billion.

Training and extended unemployment insurance benefits account for the large majority of

program spending. Between 2009 and 2022, the TAA program spent a cumulative total of

$9.2 billion on 341,311 displaced workers.

14See https://www.dol.gov/general/topic/training/tradeact (accessed March 27, 2023) for details.
15See Appendix A for a discussion of additional benefits available under TAA.
16See https://www.dol.gov/agencies/eta/tradeact/data/petitions-determinations (accessed

August 23, 2023).
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Various studies have examined TAA, including Magee (2003), Baicker and Rehavi

(2004), Dolfin and Berk (2010), Reynolds and Palatucci (2012), Park (2012), Monarch et

al. (2017), Kondo (2018), and Hyman (2018). However, neither these studies nor the

widely known TAA evaluation conducted jointly by Social Policy Research Associates and

Mathematica Policy Research from 2004-2011 (D’Amico and Schochet 2012) included a

systematic evaluation of TAA’s wage insurance program, which is our focus.17

2.2 Wage Insurance

The wage insurance (WI) portion of TAA provides an alternative way to compensate older

TAA-eligible workers, who are less likely to retrain, while providing incentives for

reemployment. The wage insurance program was introduced as a pilot in 2002, and we

focus on the permanent version introduced in 2009 under the name Reemployment Trade

Adjustment Assistance (RTAA) which changed eligibility criteria in ways that markedly

increased take-up. Between 2009 and 2021, more than 30,000 workers received subsidy

payments through RTAA, with the average recipient claiming about $5,600 in subsidies.18

Wage insurance benefits under RTAA are restricted to TAA-certified workers aged 50

and older at reemployment, and cover up to half of the difference between pre-displacement

and post-displacement wages, so the dollar value of the benefit is larger when reemployment

wages are lower. The maximum cumulative benefit amount is capped at $10,000 over a

two-year period, and only workers who earn up to $50,000 (pre-tax) upon reemployment are

eligible.19

The benefit eligibility period lasts for two years, starting with the earlier of either

reemployment or the exhaustion of Unemployment Insurance (UI) payments (26 weeks in

most states absent extensions during recessions). Therefore, a worker who finds

reemployment relatively early has the full two years of benefit eligibility, while a worker

finding reemployment after exhausting UI benefits has a shorter benefit eligibility

window.20 This rule implies that workers may be displaced prior to age 50 and receive

wage insurance payments if they are 50 when reemployed, provided they have not yet

exhausted the two-year benefit eligibility period. As discussed in Section 5, our analysis

17See footnote 9.
18Authors’ calculation based on TAA annual reports.
19The program parameters were relaxed from 2009 to 2011, increasing the maximum benefit cap to $12,000

and maximum earnings to $55,000.
20During the pilot phase of the program, prior to 2009, workers were required to find a new job within

26 weeks of displacement to receive wage insurance benefits. However, few workers received WI payments
during this pilot phase. This was attributed to the 26-week deadline for reemployment, lack of awareness of
the program at the time, and the requirement to choose either wage insurance or training and extended-UI
(D’Amico and Schochet 2012).
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accommodates this rule using either a one-sided “donut RD” approach or a regression-kink

design (both yielding similar results).

As an example, consider a worker initially earning $50,000 per year and who finds

reemployment in a job paying $40,000 per year. The yearly wage subsidy represents half of

the gap between the old and new earnings, i.e. $5,000 per year. Figure 1 shows how this

benefit structure affects the worker’s perception of potential wage offers, ignoring benefit caps

for simplicity (Section 3 defines the notation in Figure 1 and derives the subsidy-inclusive

wage distribution).21

Figure 1 – Example of Perceived Wage Offer Distribution with Wage Insurance

f(w)

1
1−ϕf

(
w−ϕw0

1−ϕ

)

w0

Notes: Illustrative yearly wage offer distribution: f(w). Pre-displacement yearly earnings: w0 = $50, 000.
Wage insurance subsidy rate: ϕ = 0.5.

Assume the worker faces the wage offer distribution shown with the solid gray line.

Wage insurance eligibility compresses the subsidy-inclusive wage offer distribution from

below, up to the pre-displacement earnings of $50,000, above which the worker does not

receive benefits. The perceived subsidy-inclusive wage distribution is shown by the black

dashed line in Figure 1. As discussed in Section 3, in the context of a standard

partial-equilibrium search model, workers will lower their reservation wages and increase

their search effort in response to this distortion in the perceived wage offer distribution.

Both responses result in shorter average non-employment durations.

Note that Figure 1 assumes the wages offered by firms are not affected by the presence

21In their study of the German EGS wage insurance program, Stephan et al. (2016) conceptualize the
effects of wage insurance on effective offers using a similar figure.
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of the wage insurance program. As discussed in Appendix A, this assumption is justified by

(1) the program’s small scale relative to the population of job seekers (less than 0.3 percent

of those filing new UI claims were eligible for wage insurance), (2) the fact that employers

do not know which workers are eligible, and (3) that benefits are calculated and delivered to

workers without employer knowledge or participation. We discuss limitations to this partial

equilibrium setting in Section 10.

There is no meaningful private market for wage insurance. Two market failures likely

explain this absence. First, imperfections in credit markets may prevent workers from

pledging future earnings as collateral. This market failure is similar to the case of student

loans, in which securitizing human capital is challenging. The second possibility is adverse

selection. Workers likely have private information about their probability of

unemployment, and those who expect to face unemployment would be more likely to

purchase wage insurance policies than those who believe their job is safer. Private

information about future job loss can explain the absence of a market for unemployment

insurance that supplements government benefits (Hendren 2017).

3 Pedagogical Model

To build intuition for how wage insurance eligibility affects an unemployed worker’s search

behavior, this section introduces wage insurance into a stationary partial-equilibrium job

search model (McCall 1970) with endogenous search effort. We characterize how wage

insurance eligibility influences a worker’s reservation wage, optimal search effort, and

ultimately their non-employment duration. To permit a simple graphical representation of

optimal search behavior, the pedagogical model in this section assumes a stationary setting

in which there is no on-the-job search, employment is an absorbing state, and wage

insurance payments are permanent and uncapped for eligible workers.22 We postpone

adding more realistic non-stationary features including benefit expiry and duration

dependence in wage offers until Section 8, where we demonstrate that the magnitudes of

our empirical estimates are consistent with standard search theory.

Setup: Time is discrete, and we consider a infinitely-lived worker who is displaced at t = 0

after earning w0 in the previous job. The subsidy rate is ϕ, and we define the worker’s

22 In practice, 85 percent of payment recipients do not hit maximum benefit caps. In the context of more
complex search models incorporating on-the-job search or job ladders, wage insurance may have additional
predicted effects. For example, eligible workers may be more likely to switch industries or occupations or to
take jobs with lower initial wages but faster wage growth. As discussed in Section 7, we do not find evidence
for these effects.
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subsidy-inclusive wage when employed at wage w as w̃(w), where

w̃(w) =

w + ϕ(w0 − w) if w < w0

w if w ≥ w0.
(1)

The worker is forward-looking with a discount factor β and receives a payment b in each

period of non-employment. The worker optimally chooses a search intensity λ, which equals

the probability of receiving a wage offer and comes at a convex cost c(λ), where c′(λ) > 0,

and c′′(λ) > 0. For simplicity, there is no on-the-job search, employment is an absorbing

state, and workers draw wage offers from a fixed and exogenous cumulative distribution

function F (w). Figure 1 shows an example in which F (w) is lognormal, the subsidy rate

ϕ = 0.5, and the pre-displacement annual wage w0 = $50, 000. Because wages below w0 are

subsidized, the subsidy-inclusive wage distribution is compressed upward by a factor of 0.5

below w0.
23

Value of Employment: The indirect utility of employment at wage w is

V e
t (w) = w̃(w) + βV e

t+1(w). (2)

Since employment is an absorbing state and there is no on-the-job search, the value of

employment at a given wage is deterministic and there is no expectation in the continuation

value. If w ≥ w0, then the worker receives no subsidy and earns w in all subsequent periods.

If w < wo, then the worker receives the subsidized wage w + ϕ(w0 − w) in all subsequent

periods. In both cases, the setting is stationary and V e
t (w) = V e

t+1(w). Therefore,

V e(w) =


w+ϕ(w0−w)

1−β if w < w0

w
1−β if w ≥ w0

(3)

Value of Unemployment: Since the problem is stationary, the indirect utility of

unemployment V u is equal in all time periods, as are the optimal reservation wage w and

23Using equation (1) it is straightforward to show that the subsidy-inclusive wage distribution is given by

f̃(w) =

{
1

1−ϕf
(
w−ϕw0

1−ϕ

)
if w < w0

f(w) if w ≥ w0,

with a jump at w0 because the CDF of the subsidy-inclusive wage in (1) has a kink at w0.
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optimal search effort λ∗. The value of unemployment is then

V u = b+ max
λ

[
−c(λ) + (1− λ)βV u + λβ

∫ ∞
0

max{V e(w), V u}dF (w)

]
(4)

Optimal Search Behavior: Define λ∗ as the optimal search effort and w as the reservation

wage, such that V u = V e(w). Equation (4) then implies24

(1− β)V e(w)− b+ c(λ∗) = λ∗β

∫ ∞
w

(V e(w)− V e(w)) dF (w) (5)

which determines the reservation wage w given the optimal search effort λ∗. Again using

V u = V e(w), the first-order condition for optimal search effort in equation (4) is

c′(λ∗) = β

∫ ∞
w

(V e(w)− V e(w))dF (w), (6)

which determines the optimal search effort λ∗ given the reservation wage w. Equations (5)

and (6) therefore simultaneously determine the optimal search effort and reservation wage.

Effect of Wage Insurance Eligibility on Search Behavior: In Appendix E, we show

analytically that wage insurance eligibility reduces the reservation wage and increases optimal

search effort in this model. Figure 2 presents a graphical analysis highlighting the intuition

behind this result. Panel (A) plots the reservation wage condition in equation (5). The left

side of equation (5) reflects the cost of turning down a wage offer w to continue searching.

In the absence of wage insurance, this cost (dashed black line) is an increasing straight line,

since the value of employment is proportional to the wage. The right side of equation (5) is

the benefit of turning down a wage offer w to continue searching, which equals the probability

of receiving an offer at the optimal search effort times the discounted value of the expected

wage increase if an offer is received. This benefit is decreasing and convex in w, as shown

in the figure (solid black line). The intersection of these two profiles yields the worker’s

reservation wage.

24V u = V e(w) and dV e(w)/dw > 0 imply
∫∞
0

max{V e(w), V u}dF (w) = V u+
∫∞
w

(V e(w)− V e(w)) dF (w).
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Figure 2 – Optimal Search Behavior With and Without Wage Insurance

(A) Reservation Wage (B) Search Effort

Notes: Panel (A) plots the optimal reservation wage condition in equation (5) with wage insurance (in blue)
and without (in black). Panel (B) plots the first order condition determining optimal search effort in equation
(6), where marginal cost (the left side of the equation) is invariant to wage insurance. For illustration, we
use a lognormal quarterly wage distribution F (w) with µ = 6.5 and σ = 1; a convex search cost function
c(λ) = κ · λ1+γ/(1 + γ) with κ = 10,000 and γ=4; β=0.98; b=5,000; w0=12,000; and ϕ=0.5.

Now consider the same profiles for a worker eligible for wage insurance, shown in blue

in Figure 2 Panel (A). For wage offers above w0 (in this example $12,000 per quarter), the

worker does not receive any subsidy payment, and the profiles are identical to those for an

ineligible worker, except for the change in optimal value of λ∗. For offers below w0, the cost

of turning down a wage offer is now higher, because the worker loses the subsidy as well.

Since wage insurance subsidies are larger for lower wages, the slope of the cost profile (dashed

blue line) is flatter to the left of w0. The benefit of continued search (solid blue line) falls

for wage offers below w0. Wage insurance provides larger subsidies when wages are lower,

so it increases V e(w) by weakly more than it increases V e(w) when w ≥ w. Examining the

right side of equation (5), this implies a reduction in the benefit of continued search, and

that reduction is larger for lower values of w. As is clear in Panel (A), by tilting the cost

and benefit profiles below w0, wage insurance eligibility lowers the reservation wage.25

Panel (B) shows that wage insurance also increases optimal search effort by increasing

the value of receiving a wage offer, which appears on the right side of equation (6). Under

the assumption of a convex search cost function, which is unaffected by wage insurance, the

optimal search effort, λ∗, increases. This increase accounts for the slight differences in the

cost and benefit profiles in Panel (A) for wage values above w0.

25This tilting of the cost and benefit profiles distinguishes the incentives resulting from wage insurance
from those of a reemployment bonus, which does not vary with the pre-displacement or reemployment wages
(c.f. Woodbury and Spiegelman 1987; Meyer 1995).
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This simple framework yields intuitive predictions regarding how wage insurance

eligibility affects worker’s search behavior and in turn their employment outcomes. Eligible

workers have a lower reservation wage and exert greater search effort, both of which lead to

shorter average unemployment durations. To the extent that the reservation wage is

binding, eligible workers will exhibit lower reemployment wages, all else equal. However, as

discussed in Section 8, in a more realistic setting where wage offers exhibit negative

duration dependence, eligible workers’ shorter unemployment durations may offset this

expected reduction in reemployment wages (Schmieder et al., 2016; Nekoei and Weber,

2017).

4 Data

An empirical analysis of wage insurance requires that we (1) identify workers involved in a

TAA-certified displacement episode, (2) observe workers’ age at displacement to determine

wage insurance eligibility, and (3) measure worker-level labor market outcomes in the years

preceding and following displacement. We build such a database by combining administrative

data from the TAA program with longitudinal matched employer-employee data from the

Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD). This section first

provides an overview of these two data sources, with additional details provided in Appendix

B, and then presents descriptive statistics.

4.1 TAA Petition and Worker Data

We begin with the universe of TAA petitions (1974-2016), acquired through Freedom of

Information Act (FOIA) requests from the U.S. Department of Labor (see Hyman 2018). For

each petition, this dataset reports the plant (establishment) name and address, the petition

filing date, determination status (TAA certification or denial) and date, impact (separation)

date, and eligibility expiry date. We use these dates to identify the set of workers laid off in

the eligibility window who qualify for TAA benefits. Each petition also contains an estimate

of the number of workers eligible for the program under the relevant petition, allowing us to

corroborate the number of eligible workers measured in Census data.

From 1998 to 2011, the Department of Labor retained individual-level data on

program participants in the Trade Adjustment Participant Report (TAPR) dataset.26

These data include anonymized records of all individuals receiving TAA-related benefits,

and indicate which individuals participated in the RTAA wage insurance program. This

26These data were obtained through two separate FOIA requests at the Department of Labor, which
feature in Park (2012) and Reynolds and Palatucci (2012).
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information allows us to calculate take-up rates for the wage insurance program and to

observe the characteristics of those workers relative to the broader population of TAA

participants through 2011, but is not sufficiently detailed to match with workers in the

LEHD.

4.2 Census Data

We merge the TAA petition data to the U.S. Census Bureau’s LEHD administrative files,

which provide detailed person-level panel data tracking workers’ quarterly employment status

and pre-tax earnings across employers, industries, geographies, and time. The core data are

compiled from employer-reported UI filings at the state level for every paid employee. While

the LEHD data partnership spans all 50 states, for this project 24 states and the District

of Columbia approved data access.27 Our main sample uses quarterly earnings from 2007 to

2014 for these 25 states from the 2014 LEHD Snapshot. We also observe an indicator for UI-

covered employment in any state, allowing us to observe employment status even if workers

move outside the participating 25 states.28 The LEHD files also include the worker’s date

of birth, gender, race, and educational attainment, along with the employing firm’s age and

size.29 Together, the TAA petition and Census databases allow us to identify TAA-eligible

workers just above and below the RTAA wage insurance eligibility age cutoff and to observe

their labor market outcomes over a period of many years.

The vast majority of plants that petition for TAA are part of firms experiencing mass

layoffs. Figure 3, Panel (A) shows that many petitioning firms close shortly after filing a

TAA petition. Panel (B) documents that among surviving firms, median employment

drops precipitously, with substantially larger declines among firms that are certified. A

potential concern is that workers displaced from certified firms may have weaker labor

market opportunities than workers displaced from denied firms; however, in the context of

our D-RD research design (Section 5), this difference would bias us against finding

favorable effects of wage insurance eligibility. That is, using denied workers as a

counterfactual for outcomes absent certification will, if anything, understate the positive

effects of wages insurance eligibility.

27These include the following states: AR, AZ, CA, CO, DC, DE, FL, IA, ID, IL, IN, KS, MD, ME, MO,
MT, NM, NV, OK, OR, PA, SC, TN, WA, WV. These states account for just under half of total TAA
spending and participation (see Appendix A).

28For more details on how we construct our earnings and employment measures, see Appendix B. Also see
Abowd et al. (2009) and Vilhuber and McKinney (2009) for further details on the LEHD.

29Educational attainment is calculated based on Census Bureau multiple-imputation and probabilistic
record linking methods when the worker is not in either the decennial Census or annual American Community
Survey (ACS).
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Figure 3 – Firm Exits and Employment Around TAA Petition Filing

(A) Number of Firms (B) Median Number of Employees per Firm

Notes: Panel A plots the number of firms (state employer identification numbers (SEINs)) that are active
in each quarter relative to when the petition is filed, separately by petitions that are certified and those
that are denied. The increasing number of firms prior to petition filing is due to firm entry. The increasing
exit rate of firms after the petition filing date is not driven by firm reorganizations as reported in Census
Successor-Predecessor Files. Panel B plots the median number of employees at surviving firms, which may
include multi-establishment firms that lose an establishment.

4.3 Sample Selection

We consider the sample of TAA-certified workers covered by petitions that were filed on or

after May 18, 2009 and who were displaced by December 31, 2013. These restrictions

ensure that workers were eligible for RTAA, while also allowing us to observe earnings and

employment for at least one year following separation. Because we study the effects of

wage insurance eligibility on worker outcomes, our analysis may not identify the effects of

the program if take-up is very low. Program reports and discussions with administrators

raise concerns that many eligible workers were not aware of the wage insurance program,

potentially explaining low take-up rates (Dolfin and Berk 2010). A null effect may

therefore reflect low take-up rather than the causal effect of the policy. To address this

issue, we identify types of firms in which wage insurance take-up is predicted to be

relatively high and restrict attention to these firms in our main analysis. We do so by

building a machine learning (ML) classifier that uses data from the TAPR, which records

the number of wage insurance participants associated with each approved TAA petition in

2009-2011. Appendix D describes the procedure for identifying high-take-up petitions

based on their observable characteristics. We refer to this sample, which contains about

half of all certified petitions, as the “certified sample.” In robustness tests, we show that

our qualitative conclusions are unchanged when we relax the high take-up restriction or
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simply use the full sample of petitions.

We supplement this sample of TAA-certified petitions with a sample of petitions

denied by the Department of Labor. Hyman (2018) shows that many rejected petitions

have observably similar characteristics to certified petitions, and randomized investigator

assignment plays an important role in determining certification. This sample of denied

petitions (hereafter the “denied sample”) helps us account for changes in other relevant

programs that also occur at age 50. Most notably, eligibility requirements for disability

insurance—Supplemental Security Income (SSI) and Social Security Disability Income

(SSDI)—loosen at age 50 due to the occupational grids used to determine disability status

(Chen and van der Klaauw 2008; Deshpande et al. 2021; Carey et al. 2022). A large body

of work using various identification strategies consistently finds disability insurance reduces

employment and earnings (Bound 1989; von Wachter et al. 2011; Maestas et al. 2013;

French and Song 2014; Gelber et al. 2017; Low and Pistaferri 2020; Abraham and Kearney

2020). As a result of these changes in disability insurance, trade-displaced workers might

experience a drop in employment at age 50 in the absence of wage insurance. The next

section describes how we incorporate the denied sample using a difference-in-discontinuity

design to isolate the effect of wage insurance from other programs.30

In both the certified and denied samples, we include workers age 22 to 60 at the date

of separation to allow for at least 4 years of observed labor market outcomes before and

after separation, within working age range (18 to 65). We restrict attention to those with

high labor force attachment, defined as earning at least $3,000 in each quarter from 8 to 5

quarters prior to separation (targeting the $12,000 annual filing cutoff requirement used by

the IRS). We impose this condition in the second year before separation to avoid endogenous

sample selection from any anticipatory changes in earnings in the year before displacement.

Finally, our main analysis focuses on workers with at least one full quarter of non-employment

after displacement. This restriction ensures that we do not include workers who voluntarily

switched employers for reasons unrelated to the trade shock, rather than being involuntarily

displaced. While this definition of displaced workers follows previous literature (Jacobson

et al. 1993; Couch and Placzek 2010; Sullivan and Von Wachter 2009), one concern is that

excluding these workers conditions on an outcome. In robustness tests, we include workers

who switched employers without a full quarter of non-employment and obtain qualitatively

similar estimates, suggesting this restriction does not meaningfully change our findings.

30While work requirements for childless adults enrolled in the Supplemental Nutrition Assistance Program
(SNAP) stop at age 50 (Gray et al. 2023), that policy was suspended for nearly all of our sample period.
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4.4 Descriptive Statistics

Table 1 presents means and standard deviations of key worker characteristics and earnings

prior to separation in the certified and denied samples (columns 1–4). In addition, columns

5–6 show similar statistics for a nationally representative sample of displaced workers, using

the Displaced Worker Supplement (DWS) of the Current Population Survey. In this section,

we highlight several comparisons between the two samples used in our analysis and the

broader sample of displaced workers in the U.S.

Table 1 – Descriptive Statistics

TAA-certified sample TAA-denied sample CPS DWS

Mean SD Mean SD Mean SD
(1) (2) (3) (4) (5) (6)

Age at separation 45.38 [10.47] 43.38 [10.91] 39.56 [10.85]
Less Than High School 0.11 [0.32] 0.13 [0.33] 0.11 [0.31]
High School 0.39 [0.49] 0.32 [0.47] 0.29 [0.46]
Some College 0.33 [0.47] 0.33 [0.47] 0.32 [0.47]
College or higher 0.17 [0.38] 0.22 [0.42] 0.28 [0.45]
Female 0.35 [0.48] 0.39 [0.49] 0.42 [0.49]
Black 0.12 [0.32] 0.14 [0.35] 0.13 [0.33]
White 0.82 [0.38] 0.77 [0.42] 0.80 [0.40]
Other Race 0.06 [0.24] 0.09 [0.29] 0.07 [0.26]
Hispanic 0.07 [0.25] 0.12 [0.32] 0.18 [0.38]
Prior Earnings in -8Q to -5Q 45,160 [21,900] 48,620 [25,700] 40,927 [40,491]
∆ Prior Earnings from -8Q to -5Q 17.84 [3,623] -8.05 [4,091] - -
Overall Tenure (years) 14.69 [4.56] 14.42 [5.15] - -
Prior-Firm Tenure (years) 7.24 [5.39] 6.14 [5.13] 4.86 [5.84]
Firm Age (years) 29.65 [9.89] 31.85 [8.63] - -
Log Firm Size 7.85 [1.88] 9.50 [2.15] - -

Notes: The TAA-certified and TAA-denied samples are restricted to high labor force attachment, defined
as earning at least $3,000 in each quarter from 8 to 5 quarters prior to separation. Observation counts
for the TAA-certified sample (N = 28, 000) and TAA-denied-sample (N = 48, 500) are rounded due to
Census disclosure rules. N = 76, 500 pooling both certified and denied samples. Earnings are deflated
to 2010Q1. Firm age corresponds to the age of the parent firm. All variables besides prior earnings are
measured at time of separation. The last two columns present statistics from the 2010, 2012, and 2014
Displaced Workers Supplement of the Current Population Survey, obtained from IPUMS-CPS (Flood et al.,
2022). We include workers age 22-60 at displacement for consistency with the sample definition columns
(1)–(4). Means and standard deviations are calculated using supplement-specific weights provided by the
CPS. Topcode imputation for prior earnings follows Armour et al. (2016). Weekly earnings are converted to
yearly equivalents assuming 50 weeks employed per year, on average.

First, the mean separation age is 45 in the certified sample and 43 in the denied

sample, while the DWS sample average is 40. These averages are a bit younger than the

age 50 discontinuity, suggesting the treatment effects we estimate will correspond to ages
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close to, but somewhat older than, the average among displaced workers. Second, workers in

both of our analysis samples worked for their prior employers for approximately 6–7 years,

on average, before displacement. These tenures are slightly longer than the DWS average

of 5 years, and reflect both the high attachment sample restriction and the types of firms

that experience trade shocks and petition for TAA. Average earnings 5 to 8 quarters prior

to separation are $45,160 in the certified sample and $48,620 in the denied sample, while

the DWS average is $40,927. Finally, workers in both analysis samples are more likely to be

men and to have a high school degree without attending college than the average displaced

worker in the U.S. Overall, workers in our sample have features that make displacement

particularly disruptive.

Workers in both certified and denied samples experience large and persistent declines

in employment and earnings, consistent with trajectories documented in prior research

(Jacobson et al. 1993, Lachowska et al. 2020, Hyman et al. 2021). Figure 4 presents

descriptive event study plots of employment and earnings replacement rates for workers

aged 47–53.31 About 60 percent of workers are reemployed after four years. Workers

replace slightly over half of their pre-separation earnings (excluding any subsidies) by this

time, indicating that even those who become reemployed experience a decline in earnings.

The magnitude of this earnings loss is sizable and suggests a potential role for wage

insurance. We next describe our empirical approach to estimate the effect of wage

insurance on worker outcomes.

5 Regression Discontinuity Design

To estimate the causal effect of wage insurance, we leverage the requirement that workers

must be age 50 or older when reemployed to be eligible. After a TAA petition is certified

by Department of Labor investigators, all of the associated workers qualify for the baseline

TAA benefits of training and extended UI payments, while those aged 50 or older have the

additional option of receiving wage insurance. The dates determining eligibility apply to all

workers covered by the same petition, so an individual worker is unable to manipulate their

displacement date to influence wage insurance eligibility. Therefore, workers who are laid off

just above the age threshold should be, on average, otherwise identical to those laid off just

before age 50, while only the slightly older group is immediately eligible for wage insurance.

This administrative structure facilitates a regression-discontinuity (RD) design estimating

31Appendix Figure C.2 shows separate plots for workers aged 46-49 and aged 50-53 at displacement. Note
that simple comparisons between these two age groups are not sufficient to identify the causal effect of
wage insurance eligibility because employment and earnings outcomes decline with age at displacement (see
Figure 5), necessitating our regression-discontinuity design.
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Figure 4 – Descriptive Earnings and Employment Trajectories

(A) TAA-Certified, Earnings (B) TAA-Certified, Employment

(C) TAA-Denied, Earnings (D) TAA-Denied, Employment

Notes: Panel A plots earnings replacement rates among the sample of displaced workers aged 47–53,
combining both certified and denied samples. Earnings replacement is calculated as quarterly earnings
divided by the average from quarters 8 to 5 prior to displacement, inclusive of zero earnings. Panel B plots
the corresponding change in employment probabilities for the same workers. Samples are restricted to high
labor force attachment, defined as earning at least $3,000 in each quarter from 8 to 5 quarters prior to
separation. All displaced workers are employed in quarter 0 and not employed in quarter 1. Panels C and
D present corresponding plots for the denied sample.

the intent-to-treat (ITT) effect of wage insurance on worker outcomes.

We focus on the effect of wage insurance eligibility rather than the effect of receiving

wage insurance payments because the latter is not a well-defined causal parameter in our

context. While it is possible to assign wage insurance eligibility, it is not possible to force

workers into a job paying less than their pre-displacement job, which is a necessary condition

to receive wage insurance payments. From another perspective, any attempt to estimate the

effect of receiving wage insurance payments would face an exclusion restriction violation, as
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in Jones (2015). For example, an eligible worker may be induced to increase search effort

and may find a position paying more than their pre-displacement job, in which case they

do not receive subsidy payments.32 In the context of an instrumental-variables analysis

seeking to estimate the effect of receiving wage insurance payments and using eligibility as

an instrument, this behavior would constitute an exclusion restriction violation. This issue

would apply to any wage insurance program, not just the RTAA program we analyze. We

therefore focus on identifying the ITT parameter, and show that our qualitative conclusions

are robust across sample restrictions with varying predicted takeup rates.

Our preferred RD specification is a local linear model, following Gelman and Imbens

(2017), with age at separation (the running variable) centered around 50.

yit = βt0 + βt1 · 1(agei ≥ 50) + βt2 · (agei − 50) + βt3 · 1(agei ≥ 50) · (agei − 50) + εit (7)

where yit is one of several labor market outcomes for individual i in quarter t, measured

relative to separation. We observe each worker’s precise date of birth, and the term

1(agei ≥ 50) is an indicator for worker i being older than 50 at separation (i.e. older than

50 on the first day of the quarter in which the separated worker has moved to zero

quarterly earnings). The coefficient of interest is βt1, which measures the jump in the

regression function at the discontinuity. In order to avoid ad hoc bandwidth selection for

the RDs, we follow the systematic procedure of Calonico et al. (2014) to select (potentially

asymmetric) optimal bandwidths for each regression. Our main analysis does not cluster

standard errors since age is measured in days, which we treat as continuous. We run a

separate regression for each quarter relative to displacement t ∈ {−8,−7, ..., 15, 16}.
We first present RD estimates from (7) separately for the certified and denied samples.

We then pool the two samples to estimate a difference in discontinuities (D-RD) via the

following specification:

yit = γt0 + γt1 · Certi + γt2 · 1(agei ≥ 50) + γt3 · Certi · 1(agei ≥ 50)

+ γt4 · (agei − 50) + γt5 · 1(agei ≥ 50) · (agei − 50) (8)

+ γt6 · Certi · (agei − 50) + γt7 · Certi · 1(agei ≥ 50) · (agei − 50) + eit,

where Certit is an indicator for worker i being in the certified sample. By setting Certi equal

to zero, the equation collapses to equation (7) for the denied sample. The key coefficient

of interest in the D-RD specification is γt3, which measures the difference in the outcome

discontinuities between the certified and denied samples. The terms in the second and third

32This is not an uncommon occurrence; in our sample, 32 percent of reemployed workers below age 50 find
employment in a job that pays more than their past job or exceeds the program salary cap.
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lines of equation (8) allow for different slopes of the regression function on either side of the

cutoff and for these slopes to differ between the two samples.33

In estimating both equations (7) and (8), our preferred specification excludes a donut

of workers who turn 50 between separation and quarter t following separation. As discussed

in Section 2.2, these workers are partially treated relative to a worker who is displaced at

age 50, since they only become eligible for wage insurance once they turn 50 (if reemployed).

Including displaced workers who cross the eligibility threshold prior to relative quarter t

would otherwise attenuate any effect of wage insurance. We set the maximum donut length

at 6 quarters to avoid extrapolating the regression function far away from the cutoff.34 Prior

research using RDs to evaluate eligibility rules in disability insurance (Deshpande et al.

2021) and SNAP (Gray et al. 2023) employ a similar approach to capture the fact that

some individuals age into eligibility and therefore are treated only for a portion of the post-

displacement period.

We consider several alternative specifications in robustness tests, including estimating

a quadratic polynomial in age; employing a triangular kernel that weights observations closer

to the cutoff more heavily; clustering standard errors by petition, varying the bandwidth from

the IMSE-optimal bandwidth, and accounting for aging into eligibility using a regression-

kink design rather than the donut approach just discussed. As described in Section 6.3, our

results are robust to these choices and do not vary meaningfully from our main specification.

Identification Assumptions: The key identifying assumption of the RD is that the

potential outcomes are smooth at the age-50 cutoff in the absence of the treatment.35 We

perform several checks to validate the research design. First, we test for balance in baseline

covariates at the discontinuity by replacing yit in equations (7) and (8) with each of our

demographic controls and employment characteristics at baseline. Appendix Table C.1 and

Appendix Table C.2 show outcomes are nearly always balanced in both the certified and

denied samples. Appendix Table C.3 demonstrates balance in the D-RD: out of 22

covariates, one is statistically significant at the 5 percent level, as expected by chance. The

magnitudes of earnings differences prior to separation are remarkably small, at less than

33See Grembi et al. (2016) for a formal analysis of D-RD models and Deshpande (2016), Malamud et al.
(2023), and Masuda and Shigeoka (2023) for recent examples.

34Analysis of TAPR data indicates very few workers younger than 48.5 at separation ever take-up wage
insurance. See Appendix Figure C.3.

35For the donut RD, the assumption is that the potential outcomes would have evolved smoothly through
the excluded donut in the absence of WI eligibility. The RD estimate therefore compares the jump between
the projected estimate immediately to the left of the discontinuity to the regression function immediately to
the right. As robustness to using a donut, we also estimate a regression kink design that includes variation
within the donut and finds nearly identical results (Appendix Figure C.5).
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0.5 percent of the control mean.36 As a summary measure of balance, we predict average

earnings 5 to 8 quarters prior to separation from a regression using the full set of

controls—firm tenure, log firm size, firm age, year of filing, and fixed effects for education,

race, state, and 3-digit industry—and find no evidence of differences in predicted earnings

at the discontinuity.

Second, we verify that the density of the age distribution is smooth at the discontinuity.

Appendix Figure C.1 shows no evidence of bunching near the cutoff. In both samples, we

fail to reject the null hypothesis of a continuous density at age 50, using the manipulation

test for a continuous running variable from Cattaneo et al. (2018). These checks support the

identifying assumptions required for the validity of the RD and D-RD research designs.

6 Results

6.1 Earnings Replacement Rates and Employment

To illustrate the variation identifying our estimates, we first present scatterplots from

estimating equation (7) at 8 quarters following separation, and then subsequently show the

RD estimates for all other quarters relative to separation. Figure 5 shows results for

earnings replacement and employment in the certified and denied samples. Earnings

replacement is defined as quarterly earnings (inclusive of zeros) divided by the same

worker’s average quarterly earnings in the second year before displacement (quarters -8 to

-5). Wage insurance payments are excluded from all measures of earnings, as LEHD

earnings are derived from payroll tax forms (ES-202) (see Appendix B). To improve visual

clarity of the graphs, we collapse outcomes to 6-month age bins, but the fitted regression

lines and estimates are constructed using age based on precise date of birth.

There is an estimated 7.0 percentage point increase in earnings replacement at the

discontinuity for the certified sample (Panel A). This effect is large relative to the control

mean of just above 40 percent (the predicted regression line immediately to the left of the

discontinuity). In contrast, there is a 7.1 percentage point decrease in earnings replacement

at the discontinuity for the denied sample (Panel B), consistent with the expected negative

effect of relaxed eligibility requirements for disability insurance. The corresponding effects

on employment are similar, with an estimated increase of 8.8 pp for the certified sample

(Panel C) compared to a 7.7 pp decrease for the denied sample (Panel D).37 These estimated

36As described in Appendix A, severance and bonuses are excluded from annual earnings calculations,
so there is little possibility for workers expecting to be displaced to increase earnings immediately prior to
separation in anticipation of receiving a higher wage insurance payment. The lack of imbalance in earnings
one quarter prior to separation provides support that such “gaming” does not occur.

37While these disemployment effects are relatively large, Autor et al. (2014) find that trade-displaced
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changes are again large relative to their respective control means.38

Figure 5 – RD Scatterplots, 8 Quarters since Separation

(A) TAA-Certified, Earnings Replacement (B) TAA-Denied, Earnings Replacement

(C) TAA-Certified, Employment (D) TAA-Denied, Employment

Notes: Panel A visually displays the RD results for earnings replacement in the certified sample at 8 quarters
after separation and Panel B shows the corresponding results for the denied sample. Earnings replacement
is defined as quarterly earnings (inclusive of zeros) divided by the average quarterly earnings in the second
year before displacement. Panels C and D show the RD results for employment at 8 quarters after separation
for the certified and denied samples, respectively. Hollow dots denote observations in the donut that are
excluded from estimation. All samples are restricted to high labor force attachment in the second year before
displacement, defined as 4 quarters with UI-covered earnings each exceeding $3,000. Each regression estimate
uses MSE-optimal bandwidths calculated separately for each side of the cutoff and for each outcome, and a
uniform kernel to weight observations. Standard errors of the RD estimates in parentheses.

We generate RD estimates as in Figure 5 for earnings replacement and employment

workers are particularly likely to receive disability insurance.
38In an exploratory analysis, Hyman et al. (2021) use a difference-in-differences design comparing outcomes

for workers aged 50-54 at displacement to those aged 45-49, finding small effects. Figure 5 Panels (A) and
(C) make clear that this approach will yield estimates that are biased downward in the certified sample
because earnings and employment outcomes decline with age, masking the jump at age 50.
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in each quarter relative to displacement, ranging from 8 quarters before to 16 quarters

afterwards. Figure 6 plots these RD results for earnings replacement, with the estimates

at quarter 8 corresponding to the RDs in Figure 5. We overlay the results from estimating

equation (7) separately on the certified and denied samples in Panel (A) and present the

D-RD estimates from equation (8) in Panel (B).39

Figure 6 – Earnings Replacement Results

(A) RD Estimates (B) D-RD Estimates

Notes: Panel A plots RD estimates of earnings replacement rates (including zeros) for TAA-certified and
TAA-denied samples from estimating equation (7) from 8 quarters pre-separation to 16 quarters post-
separation. Panel B plots D-RD estimates from estimating equation (8) over the same interval. Shaded
areas denote 95% confidence intervals. Samples are restricted to high labor force attachment in the second
year before displacement, defined as 4 quarters with UI-covered earnings each exceeding $3,000. Each
regression estimate uses MSE-optimal bandwidths calculated separately for each side of the cutoff and for
each outcome, and a uniform kernel to weight observations.

Similar to the results at 8 quarters following displacement shown in Figure 5, we find

large increases in earnings replacement for much of the first three years. While the effect

declines over time, it remains large and statistically significant even at the end of 4 years.

Wage insurance eligibility increases earnings replacement rates by about 10 percentage points

during much of the sample period.

Figure 7 presents the corresponding figures for employment. Employment increases in

the certified sample during the first 8 quarters and then declines to zero after three years, after

the expiry of both wage insurance eligibility and TAA training. By contrast, employment

in the denied sample falls shortly after displacement and remains below zero. Taking the

difference in these two discontinuities, the D-RD (Panel B) estimate is large during most

39These results are not driven by differences in the types of workers who become reemployed during this
period. We find no evidence that the composition of reemployed workers systematically differs at the age 50
discontinuity, as measured by their predicted baseline earnings.
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quarters post-separation and eventually declines to a small and statistically insignificant

increase by the end of four years.

Figure 7 – Employment Results

(A) RD Estimates (B) D-RD Estimates

Notes: Panel A plots RD estimates of employment for TAA-certified and TAA-denied samples from
estimating equation (7) from 8 quarters pre-separation to 16 quarters post-separation. Panel B plots D-
RD estimates from estimating equation (8) over the same interval. Shaded areas denote 95% confidence
intervals. Samples are restricted to high labor force attachment in the second year before displacement,
defined as 4 quarters with UI-covered earnings each exceeding $3,000. Each regression estimate uses MSE-
optimal bandwidths calculated separately for each side of the cutoff and for each outcome, and a uniform
kernel to weight observations.

We considered a variety of dimensions of potential heterogeneity in these D-RD

estimates, including by gender, race, education level, and whether the worker’s county of

residence was above or below the median unemployment. In each case, we found no

statistically significant differences in the effects of wage insurance eligibility. In the latter

case, the lack of heterogeneity suggests we are not simply finding large favorable effects of

wage insurance because displaced workers in our sample are in particularly distressed labor

markets.

6.2 Cumulative earnings

To summarize the overall impact of wage insurance eligibility on workers’ employment

outcomes, Figure 8 plots RD and D-RD estimates for cumulative earnings, defined as the

sum of earnings during the first t quarters following displacement (in dollars deflated to

2010Q1). Cumulative earnings effects increase steadily for the certified sample, while they

fall for the denied sample starting in the fifth quarter (Panel A). The D-RD estimate—our

preferred estimate of the causal effect of wage insurance—shows a steady rise in cumulative
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earnings that continues throughout the four years of our sample.40 By the end of four

years, wage insurance eligibility increases cumulative earnings by $18,260. This represents

a 26.6 percent increase relative to the average 4-year cumulative earnings of $68,630 among

ineligible workers.

Figure 8 – Cumulative Earnings Results

(A) RD Estimates (B) D-RD Estimates

Notes: Panel A plots RD estimates of cumulative earnings for TAA-certified and TAA-denied samples from
estimating equation (7) using cumulative earnings during the first t quarters following separation. Panel B
plots D-RD estimates from estimating equation (8) over the same interval. Earnings have been deflated to
2010Q1 dollars. Shaded areas denote 95% confidence intervals. Samples are restricted to high labor force
attachment in the second year before displacement, defined as 4 quarters with UI-covered earnings each
exceeding $3,000. Each regression estimate uses MSE-optimal bandwidths calculated separately for each
side of the cutoff and for each outcome, and a uniform kernel to weight observations.

6.3 Robustness

Our main findings are robust to a range of alternative regression specifications and sample

definitions.41

Sensitivity to Kernel, Bandwidth, and Polynomial Choice: We obtain similar

results when using a second-order polynomial, a triangular kernel, including baseline

covariates, or clustering standard errors by petition. The main results are also robust to

using alternative bandwidths, including a smaller bandwidth that is half the size of the

40The plateau in relative quarter 14 is due to compositional changes in the sample owing to the censoring
of long-run outcomes for workers displaced after 2011. If we run this regression on a balanced panel of
workers displaced in 2009, we find sustained and monotonic increases in cumulative earnings.

41Due to Census disclosure limitations, we report some of the findings in the following paragraphs as
qualitative descriptions that have been reviewed by Census officials rather than as an individual figure or
table. Full results are available upon request.
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MSE-optimal bandwidth on both sides of the cutoff or a larger bandwidth that is 50

percent wider than the MSE-optimal bandwidth. Not surprisingly, the estimates using the

smaller bandwidth are less precise but still marginally significant.

Treatment of Partially Eligible Workers and Regression Kink Design: Our results

do not hinge on how we treat partially-eligible workers within the small window below age

50 (i.e. within the donut). When including these partially-treated workers in predicting the

regression function to the left of the discontinuity, the effects are attenuated as expected.

However, the pattern of the estimates is robust and generally statistically significant at the

10 percent level or lower (Appendix Figure C.4). Moreover, the estimates are quantitatively

similar to our main results when we estimate a regression kink design that includes the

partially-eligible workers (Appendix Figure C.5).

Job-to-Job Transitions, Expanded Time Horizon, and Examiner Design: Our

main results are also robust to relaxing each of the sample restrictions one at a time. We

obtain similar results when including workers who switch to another firm without a full

quarter of non-employment along with our main sample of displaced workers. The former

may have voluntarily switched rather than being involuntarily displaced. The main D-RD

results are also robust to using denied TAA petitions since 2002 (instead of 2009) as the

denied sample. While we prefer to keep the time periods of the certified and denied petitions

aligned, this analysis suggests the choice of denied petitions does not drive the D-RD results.

We also instrument for certification status in our D-RD equation using the petition-level

investigator leniency IV from Hyman (2018). We find that 2SLS D-RD point estimates for

earnings replacement and employment are larger than our baseline OLS D-RD estimates.

However, the 2SLS estimates are imprecise and not statistically different from OLS or zero.42

Relaxing Predicted Take-Up Restriction: The results are robust to including

displaced workers from all petitions rather than only the sample of petitions with high

predicted take-up (Appendix Figure C.6). In Appendix Figure C.7 we probe the sensitivity

of our cumulative earnings results by varying the stringency of the high-takeup restriction.

The D-RD estimates for cumulative earnings range from about $12,000 to $22,000, with

our preferred estimate of $18,260 falling just above the midpoint. Results are very similar

across three distinct prediction models.

42The second stage in examiner designs is known to carry wide standard errors (Angrist et al. 1999; Hull
2017). Given that we are restricting the data in Hyman (2018) to a subset of post-Great Recession petitions
in which a larger share of workers were certified, there is little first stage variation from which to precisely
estimate effects using the 2SLS design.

28



Falsification Test using Age 55 Disability Insurance Cutoff: We implement a

falsification test to assess the assumption underlying our D-RD analysis, that the denied

sample accurately captures the effects of relaxed disability insurance eligibility rules for

workers in the certified sample. The eligibility criteria for disability insurance further relax

at age 55, while wage insurance eligibility does not change at this age. Displaced workers

covered by certified petitions have access to both wage insurance and standard TAA

benefits on both sides of the age-55 cutoff, so we should not observe an increase in

employment or earnings replacement at age 55 (unlike at age 50). Instead, we should see a

deterioration in labor market outcomes, reflecting increased access to disability insurance.

As shown in Appendix Figure C.8, we observe large and statistically significant decreases

in employment and earnings replacement for the certified sample at age 55, with

magnitudes similar to those in the denied sample at age 50. When estimating the D-RD at

age 55, we find reductions in employment and earnings replacement that are always

negative post-separation and generally not statistically different from zero. The fact that

we only detect increases in earnings replacement and employment for the age 50

discontinuity in the TAA-certified sample provides further confidence that our results

capture the causal effect of wage insurance eligibility.

7 Mechanisms

In this section, we investigate the mechanisms through which wage insurance eligibility

increased displaced workers’ subsequent earnings; recall that Figure 5 and Figure 6 show a

roughly 14 percentage point increase in earnings replacement 8 quarters following

displacement. Our analysis in this section suggests that wage insurance eligibility increases

worker earnings primarily through increased employment probability and reduced

non-employment duration. We find minimal support for other mechanisms involving job

quality, worker skills, match quality, or industry switching.

We first perform a statistical decomposition of our main result. The effects on

cumulative earnings in Figure 8 potentially reflect both the increased probability of

employment shown in Figure 7 and an increase in earnings conditional on employment. We

calculate the share of the overall effect on cumulative earnings in a given quarter driven by

increased employment probability vs. increased earnings conditional on employment, such

that these quarterly effects sum to the cumulative effect shown in Figure 8.43 We find that

65.5 percent of the 4-year cumulative earnings effect is explained by an increased

probability of employment, and the remaining contribution from earnings conditional on

43Let earnit be worker i’s earnings in period t relative to displacement and Di be an indicator for wage
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employment emerges primarily in the fourth year following separation.44

In Table 2, we investigate a range of related outcomes to better understand how these

differences in employment and earnings emerge between eligible and ineligible workers. In

all cases, the table presents D-RD estimates with each row denoting a separate regression.

The outcomes are either invariant to quarter following displacement or explicitly list the

applicable quarter.

Consistent with the employment results in Figure 7, the average non-employment

duration following displacement is shorter by 1 calendar quarter among eligible workers,

and these workers spend 1.26 fewer quarters out of employment across all non-employment

spells. These results are consistent with the theoretical prediction that eligible workers

pursue employment more intensively than ineligible workers by increasing search intensity

and/or lowering reservation wages. As in the long-run employment effects in Figure 7,

wage insurance eligibility does not impact whether workers are more likely to ever find

reemployment, at least through four years following displacement. We are able to rule out

moderately-sized increases in this outcome; the point estimate is close to zero, and the

upper bound of the 95-percent confidence interval rules out increases of 6.4 percentage

points in the reemployment probability, equal to 7.7 percent of the control mean.

We find positive but small and statistically insignificant effects on earnings

replacement and earnings levels in the first full quarter of employment after the initial

displacement.45 This result is unlikely to be confounded by compositional differences

because, as just discussed, ever being reemployed is not affected by wage insurance

insurance eligibility. The effect of wage insurance eligibility on cumulative earnings can be written as follows.

E

[∑
t

earnit|Di = 1

]
− E

[∑
t

earnit|Di = 0

]
=
∑
t

(E [earnit|Di = 1]− E [earnit|Di = 0])

Then for each period, the effect of eligibility on earnings can be decomposed into terms capturing the effect
on the probability of employment and the effect on earnings given employment. Using the Law of Total
Expectation, the effect of interest can be written as:

E [earnit|Di = 1]− E [earnit|Di = 0] =

E[earnit|Di = 1, empit = 1]× (P(empit = 1|Di = 1)− P(empit = 1|Di = 0))

+(E[earnit|Di = 1, empit = 1]− E[earnit|Di = 0, empit = 1])× P(empit = 1|Di = 0)

where empit is an indicator for worker i’s employment status in period t. Appendix C presents additional
details of this decomposition and notes how each of these terms maps to an estimate from one of the D-RDs.

44See Appendix Figure C.9, which estimates earnings replacement rates by period but omits observations
with zero earnings (i.e. quarters in which the worker is not employed). Consistent with our main results
in Figure 6 and the decomposition presented here, we find increased earnings for eligible workers who are
employed in later periods following displacement.

45We fail to find evidence of bunching in reemployment earnings around the maximum salary for wage
insurance eligibility based on density test of Cattaneo et al. (2018).
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Table 2 – Mechanisms: D-RD Estimates

Estimate S.E. Control N
Mean

Panel A. Employment
Ever reemployed 0.008 0.029 0.799 76,500
Non-employment duration (quarters) -1.002 0.381 5.939 76,500
Total quarters not employed -1.259 0.426 7.163 76,500
Earnings replacement rate | reemployed, first full quarter 0.053 0.040 0.616 56,000
Earnings | reemployed, first full quarter ($) 338.2 628.8 7,929 56,000
Earnings | reemployed, last full quarter ($) 332.5 637.7 9,910 56,000

Panel B. Job Quality
Employment duration of 1st job post-separation (Q) 1.043 0.435 7.195 56,000
Firm age (years) of first job post-separation 0.734 0.650 29.08 56,000
Log firm size of first job post-separation 0.336 0.308 6.684 56,000
Earnings growth rate (percentage points) -0.195 1.798 2.937 56,000
Predicted quarterly earnings of 1st job post-separation, logs -0.001 0.015 9.156 56,000
Predicted quarterly earnings of 1st job post-separation, ($) 13.99 103.9 11,200 56,000

Panel C. Job Laddering and Mobility
Number of unique firms -0.041 0.090 1.919 56,000
Switched industries (3-digit) by Q12 -0.009 0.042 0.627 56,000
Switched industries (3-digit) by Q16 -0.037 0.041 0.691 56,000
Switched county of employment by Q12 0.018 0.040 0.513 56,000
Switched county of employment by Q16 0.010 0.040 0.583 56,000

Notes: Table presents D-RD results for estimating equation (8) for different outcomes. Each row corresponds
to a separate regression. The difference in discontinuities measures the jump in the regression function at
age 50 for the TAA-certified sample relative to the TAA-denied sample. The Control Mean denotes the
projected estimate immediately to the left of age 50 for the TAA-certified sample. Each regression uses
MSE-optimal bandwidths calculated separately for each side of the 1.5 year donut for each outcome, and a
uniform kernel to weight observations. Predicted earnings in Panel B are constructed by regressing average
firm-level earnings against log firm age, log firm size, and 6-digit industry codes. Sample sizes for each
regression vary depending on the bandwidth used. We report full sample sizes prior to bandwidth selection
due to Census disclosure rules, where N=56,000 corresponds to the sample of reemployed workers.

eligibility. The lack of reduction in reemployment earnings might seem to contradict the

prediction of reduced reservation wages. However, a large literature finds substantial

duration dependence in reemployment wages, with workers who experience longer

unemployment durations earning lower reemployment wages (Kroft et al. 2013, 2019;

Schmieder et al. 2016; Nekoei and Weber 2017). Since eligible workers have substantially

shorter non-employment durations on average, their reemployment wages will tend to be

higher, all else equal, offsetting reductions in the reservation wage.

Figure 9 emphasizes this point by showing that not only is the average non-employment

duration shorter for eligible workers, but the entire distribution of durations shifts left for

eligible workers. Panel (A) plots results from separate D-RDs in which the dependent variable
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Figure 9 – Non-Employment Durations and Duration Dependence

(A) Distribution of Non-employment Durations (B) Earnings Replacement by Non-empl. Duration

Notes: Panel (A) plots predicted values from D-RDs of unemployment durations. The dependent variable
in each regression is an indicator of whether the worker had an unemployment duration of a given length
or shorter, as displayed on the x-axis. We consider unemployment durations from 1 quarter (corresponding
to relative quarter 2 in Figure 8) to 12 quarters (corresponding to relative quarter 13 in Figure 8). Panel
(A) regressions include workers that never become reemployed within our sample period (up to four years
since separation). The Control mean (hollow circles) denotes the mean of that outcome immediately to the
left of age 50 for the TAA-certified sample. The Control mean + wage insurance (WI, shaded circles) adds
the D-RD estimate (γt3 from equation (8)) and shows its 95% confidence interval. Samples are restricted to
high labor force attachment, defined as earning at least $3,000 in each quarter from 8 to 5 quarters prior
to separation. Panel (B) plots mean earnings replacement rates against unemployment durations among
displaced workers who become reemployed. The figure pools workers aged 45–54 at separation.

is an indicator for whether the worker had a non-employment duration of a given length or

shorter. At each quarter of non-employment duration through 9 quarters, a larger fraction of

workers eligible for wage insurance has found reemployment compared to those not eligible.

This shift is driven by strong reemployment effects after 1 quarter of non-employment; the

hazard analysis in Appendix Figure C.10 confirms this finding.

Panel (B) of Figure 9 shows evidence of strong negative duration dependence within

our sample of displaced workers. The graph plots average earnings replacement rates

among those who become reemployed as a function of their non-employment duration. The

possibility of compositional differences by quarter of re-employment (dynamic selection)

precludes us from causally interpreting the duration dependence slope in our setting.

Selection concerns are partly mitigated by our focus on earnings replacement rates rather

than raw earnings levels, and the observed magnitude of duration dependence is robust to

controlling for education status (high school, some college, college or higher), demographics

(gender, ethnicity), worker overall tenure, and firm age and size at the worker’s separation
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firm.46 This evidence motivates our choice to include duration dependence in our

quantification exercise in Section 8, but due to remaining identification concerns regarding

its magnitude, we rely on external estimates of duration dependence from Schmieder et al.

(2016) and examine robustness to varying the magnitude.

Together, the panels of Figure 9 show how the reduction in non-employment duration

driven by wage insurance eligibility can offset declines in reservation wages in the presence of

negative duration dependence. Consider the large drop in reemployment earnings for workers

with one vs. two quarters of non-employment duration in Panel (B). Since in Panel (A), wage

insurance eligibility substantially increases the probability of becoming reemployed after a

single quarter, wage insurance-eligible workers are more likely to find a better-paying job by

virtue of their shorter durations.

When eligible for wage insurance, workers may be willing to accept lower-quality jobs,

planning to exhaust the subsidy before moving to another job. We study various measures

of reemployment job quality commonly used in the UI literature (e.g. Nekoei and Weber

2017) in Table 2 Panel (B), including the duration of the first post-separation job and the

age and size of that employing firm. In all cases, we find small and statistically insignificant

effects, suggesting that the job quality margin is not substantially affected by wage insurance

eligibility. While there is an increase in the estimated employment duration of the first job,

this effect is largely mechanical due to right-censoring of observed employment spells. Since

eligible workers have non-employment durations that are shorter by a calendar quarter,

their observed employment spells are longer by a quarter as well. Still, this finding at least

provides no evidence for reductions in job quality. We also examine the number of unique

firms employing the worker following displacement. Again, we find a small and statistically

insignificant effect, suggesting similar job quality and similar match quality for workers with

and without wage insurance eligibility.

As an alternative measure of job quality, we construct predicted earnings by regressing

average quarterly earnings at the firm level against log firm age, log firm size, and fixed

effects for 6-digit industry codes. These variables alone explain 45 percent of the variation

in average firm-level earnings. As shown in the final two rows of Panel (B), we fail to find

differences in predicted earnings measured in either logs or levels and can rule out even

small decreases (or increases) in firm quality; the lower bounds of the 95-percents confidence

interval rule out decreases of 3 percent in earnings when measured in logs and 1.5 percent

when measured in levels.

46We find no evidence that the profile of downward sloping duration dependence in reemployment earnings
is different between workers who displace between age 45 and 49, versus workers who displace between age
50 and 54, when controlling for a linear slope in age-at-separation on either side of the age 50 cutoff. We
therefore focus on duration dependence pooling ages 45–54.
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The final mechanism we consider in Table 2 relates to a stated goal of wage insurance

when it was initially proposed and introduced as a demonstration project in TAA. Proponents

of wage insurance hoped that it might encourage workers to leave declining industries and

shift into expanding industries, with the wage insurance subsidy facilitating this transition

while workers accumulate experience and human capital in the new industry (U.S. Trade

Deficit Review Commission 2000; Kletzer and Litan 2001; U.S. White House 2016). In

Table 2 Panel (C), we test whether workers switched industries compared to their pre-

displacement job, using a change in the first 3 digits of their job’s NAICS code to classify

a switch. We do not find evidence in support of this mechanism in this context; all of the

industry transition effects are small and statistically insignificant (although the baseline rate

of switching is high). We also fail to detect evidence of switching using more aggregated (2-

digit) measures of industry switching. While this set of findings suggests that wage insurance

eligibility does not lead to much industry switching in the RTAA context, it is possible that

similar policies targeting younger workers, who have more working years left to amortize an

investment in new industry-specific skills, may respond more strongly. The last set of rows

shows that wage insurance does not increase geographic mobility, as measured by obtaining

employment in a different county.

The conclusions from Table 2 are robust to a variety of alternative approaches. First, we

reproduce the table using an RD in the TAA-certified sample to verify that our qualitative

results do not depend on differencing out the RD effects in the TAA-denied sample. We

obtain qualitatively similar estimates to Table 2 for all outcomes except log(firm size); while

its effect is of similar magnitude to the D-RD estimates, it is statistically significant in the

TAA-certified RD. We also explore sensitivity to relaxing the sample restriction to include

predicted high-takeup petitions. Our D-RD estimates remain qualitatively similar when

we include all petitions; we continue to find statistical nulls for all outcomes except non-

employment duration and total quarters not employed, and these point estimates are only

slightly attenuated relative to Table 2.

8 Quantitative Analysis

This section shows that the large re-employment effects we estimate despite negligible

effects on re-employment wages are consistent with a standard partial-equilibrium search

model. While the objective of the model in Section 3 was to guide intuition about how

wage insurance qualitatively influences worker behavior, in this section, we add more

realistic features to facilitate quantification. The quantitative model incorporates

non-stationary aspects of the RTAA program and setting, including finite program
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eligibility periods and duration dependence in wage offers. We calibrate the model’s

parameters to reflect the policy context and to target empirical moments from our D-RD

results. After showing that our empirical results are consistent with model-predicted

responses to wage insurance, we consider questions related to external validity and

mechanisms. In the main text, we summarize the key features and results, and provide

details in Appendix F.

8.1 Overview and Parametrization

The quantitative model builds upon the simple framework developed in Section 3,

incorporating wage insurance into the non-stationary partial equilibrium setup in

Schmieder et al. (2016). In this setting, workers optimally choose their search effort and

reservation wage in each period, and these choices may evolve over the non-employment

spell. This non-stationary behavior results from (1) finite eligibility periods for wage

insurance and UI benefits and (2) wage offers’ dependence on the non-employment

duration (“duration dependence”). After program eligibility expires and the wage offer

distribution becomes stationary, the worker’s search behavior is constant over time. In

Appendix F.1 we solve for optimal search behavior in this stationary period and then

derive optimal behavior in the preceding periods by backward induction, so the worker is

forward-looking. We then simulate the expected re-employment wage and non-employment

duration given the optimal search behavior with and without wage-insurance eligibility.

To operationalize this approach, we assume the worker draws wage offers from an

exogenous, log-normal distribution. To capture the negative duration dependence identified

in the prior literature and in Figure 9, the distribution shifts left over the course of the

non-employment spell. As in Schmieder et al. (2016), we assume that the evolution of the

wage offer distribution is fully captured by changes in the location parameter, µt. The offer

distribution is stationary from period T onward, such that µt = µT ∀t ≥ T . In prior periods,

µt falls by δ in each period, such that µt+1 = µt − δ ∀t < T with δ > 0.

When unemployed, the worker is eligible for a UI payment bui for Tui quarters, after

which they receive b < bui. Wage insurance is available to employed workers for Twi quarters

following displacement. For simplicity, there is no on-the-job search, employment is an

absorbing state, and workers are risk-neutral. Workers face an income tax rate τ inc on

earnings and benefits and an additional payroll tax rate τ pay on earnings. Search costs take

the form c(λt) ≡ kλ1+γt /(1 + γ), where λ ∈ [0, 1] is the probability of receiving an offer in

period t, k > 0 is a scale parameter, and γ > 0 is a curvature parameter. Other parameters

have the same interpretation as in Section 3.

Table 3 displays the parameter values we employ in our simulations. Details appear
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in Appendix F.3, but a few choices warrant discussion here. When possible we externally

calibrate parameters based on the policy environment or applicable values from the

literature. Exceptions are the wage offer distribution parameters, µ (≡ µ1) and σ, and the

level parameter k in the search cost function. We choose these parameters to target four

empirical moments via minimum distance: the mean non-employment duration and

reemployment wage for wage insurance-ineligible workers and the effect of wage insurance

eligibility on these outcomes, all reported in Table 2. When simulating search behavior, we

assume that 53 percent of workers are aware of the wage insurance program, following

survey evidence on TAA-eligible workers from Dolfin and Berk (2010). The curvature of

the cost function is from DellaVigna et al. (2017), aggregated to quarterly frequency (see

Appendix F.3 for details). We take our baseline duration-dependence parameter

δmid = 0.024 from Schmieder et al. (2016), adjusted for quarterly frequency. For

robustness, we also consider cases with half (δlow = 0.012) and double (δhigh = 0.048) the

baseline amount of duration dependence.

Table 3 – Model Parameters

Parameter Value Note

Panel A. Externally-calibrated
β, Discount factor (quarterly) 0.9879 Yearly discount factor = 0.95
γ, Cost function - curvature 3.974 DellaVigna et al. (2017)
δmid, Duration Dependence 0.024 Schmieder et al. (2016)
δlow, Low Duration Dependence 0.012 0.5 × δmid

δhigh, High Duration Dependence 0.048 2 × δmid

w0, Mean of prior earnings $11,908 Appendix Table C.1
bui, Average quarterly UI payment $5,031 Kovalski and Sheiner (2020)
b, Average payment after UI expiry $4,427 0.88× bui, Ganong and Noel (2019)
τ inc, Income tax rate (federal + state) 0.193 NBER TAXSIM
τpay, Payroll tax rate (employee share) 0.0765 NBER TAXSIM
ϕ, Subsidy rate of WI 0.5 Policy rule
Twi, Quarters of WI eligibility 10 Policy rule
Tui, Quarters of UI/TRA eligibility 10 Policy rule
T , Quarters in model 16 Sample period

Panel B. Internally-calibrated
µ, Mean of wage offer distribution 8.736
σ, S.D. of wage offer distribution 0.200
k, Cost function - level 13,052

Notes: Table presents values for the model’s parameters that are externally calibrated (Panel A)
and internally calibrated (Panel B). The internally-calibrated parameters are calculated via minimum
distance estimation. γ is aggregated to the quarterly level from the reported parameter 0.81 from
DellaVigna et al. (2017). See Appendix F for details.
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8.2 Comparison of Model Results to Empirical Results

Figure 10 shows that our empirical results are consistent with the simulated outcomes from

the model. For each of the four moments, the figure displays the sampling distribution

(gray area) and 95 percent confidence interval (dashed vertical lines) associated with our

D-RD estimates in Table 2. We show the same moments implied by the model under low

and medium levels of duration dependence (denoted by diamonds and circles, respectively),

omitting those for high duration dependence because they are visually indistinguishable from

the medium duration dependence case (see Appendix Table F.2). In all cases, the model

moments fall well within the 95-percent confidence intervals of the D-RD estimates.

Figure 10 – Comparison of Model Results to D-RD Results

Notes: Figure displays model moments relative to the target moments, which are the D-RD estimates from
Table 2. Each plot corresponds to a different moment, with the D-RD estimate displayed as a vertical line,
its sampling distribution shown in the shaded gray area, and the 95% confidence interval shown as dashed
vertical lines. The model moments are plotted for the case of medium duration dependence corresponding
to δmidµ = 0.024 (circles) and low duration dependence (diamonds), corresponding to half this level.

The model fits the mean non-employment duration and reemployment earnings of

wage insurance-ineligible workers extremely well. It also captures much of the effect of wage

insurance on non-employment duration, with effects ranging from -0.46 to -0.58 quarters.

The effect on reemployment earnings is consistently small (ranging from -$31 to -$61) and

well within the confidence interval of the empirical estimate. Collectively, the quantitative

predictions of the model are broadly consistent with the magnitudes of our empirical results.
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8.3 Wage Insurance and Duration Dependence

In Appendix F.6, we show that the quantitative effects of wage insurance depend upon

the presence of negative duration dependence in wage offers. We simulate worker search

behavior and outcomes using our baseline parameters, but assuming that there is no duration

dependence, i.e. δ = 0. In Appendix Table F.3, we find that the effect of wage insurance

eligibility on the non-employment duration is about 40 percent smaller compared to the

baseline model with duration dependence. Appendix Figure F.1 clarifies the intuition behind

this result by plotting the optimal search behavior over time for workers with and without

wage insurance and for settings with and without duration dependence. In the presence of

negative duration dependence, the expected wage draw falls over time, and therefore the

value of increased search effort falls. Because wage insurance delivers larger subsidies when

reemployment wages are lower, it partly counteracts the incentive to reduce search effort over

time as wage offers deteriorate. This leads to larger reductions in non-employment duration,

suggesting that wage insurance is likely to be particularly effective in settings with negative

duration dependence.

8.4 Robustness to Outside Option

Our empirical setting raises a potential external-validity concern because the workers in

our TAA-certified sample have access to very generous unemployment insurance benefits,

which may amplify the effects of wage insurance eligibility on non-employment durations.

To assess this concern, we simulate worker search behavior and outcomes using our baseline

parameters, but assuming that unemployment insurance eligibility lasts only for the

standard 26 weeks (2 quarters) rather than 10 quarters under TAA. The results, reported

in Appendix Table F.4, find that reducing UI benefit duration does reduce the magnitude

of wage insurance’s effects on non-employment duration, but the reduction is very small:

the predicted effect of wage insurance on non-employment durations is at most 6.7 percent

smaller when UI generosity falls from 10 quarters to 2 quarters. The similarity of the

simulated treatment effects suggests that our empirical results are not driven by the

particularly generous outside option facing TAA-eligibile workers.

9 Marginal Value of Public Funds

We now evaluate the cost-effectiveness of the RTAA wage insurance program. Using our

D-RD estimates, we calculate the marginal value of public funds (MVPF) as developed by

Hendren (2016) and Hendren and Sprung-Keyser (2020). Partial-equilibrium calculations

are applicable in our context since the program is small (see Section 2.2). If the program
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were more broadly available, the behavior of firms and workers would likely change, with

implications for wages and non-employment durations. We also do not consider spillovers

between households or across jurisdictions (Agarwal et al. 2023).

The MVPF is the ratio of the private willingness to pay for benefits (∆W ) to net

government costs, defined as program costs (∆E) less savings to government budgets (∆C):

MV PF =
WTP

Net Govt Cost
=

WTP

Program Costs−Govt Savings
=

∆W

∆E −∆C
(9)

The numerator of the MVPF reflects the willingness of workers to pay for wage insurance

benefits. This includes both direct transfers—wage insurance payments to program

participants plus changes in UI payments, valued at their monetary amounts—and any

expected changes in earnings, which we value using our D-RD estimates. This linear

valuation abstracts from any consumption smoothing benefits for risk averse households,

which would only increase the numerator and lead to an even higher MVPF. In the

denominator, we consider program costs as the sum of wage insurance payments and

administrative costs. These costs may be offset by increased tax receipts on higher earnings

and reduced UI payments, as well as other fiscal externalities.

The private benefits ∆W are the sum of wage insurance payments and increased

earnings from Figure 8, less the change in UI payments received by workers. Each of these

terms is converted into after-tax dollars. As described in Section 8, we use NBER TAXSIM

to calculate a combined marginal income tax rate of τ inc = 19.3 percent (coming from 15

percent federal income taxes and 4.3 percent state taxes) that applies to earnings and

benefits.47 Earnings are also subject to the employee payroll tax rate τ pay = 7.65 percent.

We sum quarterly earnings effects through 16 quarters (T = 16), discounted at quarterly

gross rate 1 + r, which we set to 1.0122 to match the discount factor used in Section 8.

Denoting wage insurance subsidy payments per eligible worker as s, private benefits are

calculated as:

∆W =
(
s+ bui × γ̂non−employment3

)
(1− τ inc) +

(
z ×

T=16∑
t=1

γ̃t,earnings3

(1 + r)t−1

)
(1− τ inc − τ pay)

(10)

where γ̃t,earnings3 denotes changes in each D-RD cumulative earnings estimate (γ̂t,earnings3 ) for

each relative quarter through T = 16, as shown in Figure 8. The parameter z lowers the

47We assume a $40,000 salary for a married couple filing jointly with no dependents. The 4.3 percent state
tax rate is calculated as the simple average of state tax rates for states in our sample.
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valuation of labor earnings from reduced leisure, which Mas and Pallais (2019) estimate to

equal 0.6 (60 percent of nominal earnings) for unemployed workers. UI payments equal the

average quarterly benefit bui multiplied by the change in non-employment duration

γ̂non−employment3 from Table 2. We set bui = $5, 031 based on Kovalski and Sheiner (2020).

Since our estimates correspond to ITT effects, we consider a range of assumptions about

the average wage insurance payment per eligible worker s, rather than assuming a

particular take-up rate and benefit amount. Because γ̂non−employment3 < 0, workers

effectively subtract foregone unemployment insurance payments from becoming employed

more quickly when valuing their willingness to pay for wage insurance.

Program costs ∆E are the sum of (1) wage insurance payments and (2)

administrative costs per eligible worker. Based on estimates from D’Amico and Schochet

(2012), we calculate that the administrative costs of WI are approximately $149 per

eligible worker.48 In considering fiscal externalities ∆C, our baseline calculation

conservatively only includes the amount of tax revenues collected on the increased earnings

and reductions in UI benefits. Including reductions in TAA training payments, DI benefits,

health insurance tax credits, and other transfers would make these savings to the

government even larger. The savings to the government equal:

∆C = τ inc ×
T=16∑
t=1

γ̃t,earnings3

(1 + r)t−1
− bui × γ̂non−employment3 (11)

We calculate that ∆C = $10, 818 per eligible worker. Slightly over half of these savings are

from reduced UI payments.

Using these formulas, Figure 11 illustrates the MVPF under a range of assumptions

about effective subsidies paid per eligible worker (where s scales up both ∆W and ∆C). We

find that the savings to government budgets generally exceed program costs (∆E < ∆C),

no matter the value of s. This is especially true for the most likely value of s, which is

approximately $2,970, which we calculate as mean payments among wage insurance recipients

($5,600) times the fraction of surveyed workers aware of the program (53.1 percent according

to Dolfin and Berk (2010)). This calculation of the MVPF denominator is conservative for

two reasons. First, other fiscal externalities such as reduced DI benefits and other transfers

would only further reduce government spending (as indirectly suggested by evidence on

48We calculate the administrative costs per TAA recipient as the product of three terms. First, we take
the administrative costs of $1,105 per TAA recipient in 2006 dollars and inflate to 2010Q1 dollars. Second,
approximately 50 percent of all eligible workers are estimated to receive any TAA service (D’Amico and
Schochet 2012). Third, at most 25 percent of 50-year olds who receive any TAA services receive wage
insurance during our sample period (Appendix Figure C.3). Multiplying these yields an estimate of $149
per eligible worker.
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employment (Figure 7) and earnings (Figure 8) in the TAA-denied sample). Second, ∆C

only includes tax revenue levied on cumulative earnings effects through 16 quarters (which

we can identify empirically). If positive earnings effects persist beyond this period, both the

numerator of the MVPF calculation and ∆C would be understated, which would understate

the MVPF.

Figure 11 also illustrates the MVPF remains high when using only RD estimates from

the TAA-certified sample. Under any plausible value of WI payment per eligible worker, the

fiscal externality exceeds program costs and therefore produces net savings to the government

(Figure 11). In this case, the MVPF’s denominator is negative and the program “pays for

itself.”49 In Appendix Figure C.11, we also investigate sensitivity of the MVPF to using lower

bounds of the confidence intervals for our D-RD estimates instead of the point estimates.

The program remains highly cost-effective.

Figure 11 – MVPF vs. Wage Insurance Payments per Eligible Worker

(A) D-RD Estimates (B) RD Estimates: TAA-certified sample

Notes: Figures plot the MVPFs vs. wage insurance (WI) payments per eligible worker using the point
estimates for cumulative earnings and unemployment durations from the D-RD estimates (Panel A) or RD
estimates of the TAA-certified sample only (Panel B). To illustrate the importance of fiscal externalities,
dashed lines show the MVPFs excluding tax receipts on increased earnings and reduced UI payments and
solid lines show the MVPF including fiscal externalities. For visual clarity, we truncate the MVPFs at 15
from above and indicate with red vertical lines the subsidy value at which fiscal externalities exceed program
costs (i.e. where MV PF =∞).

Wage insurance is thus an extremely cost-effective policy in the population of

trade-displaced workers. This result stands in contrast to cost-effectiveness estimates of

most other social insurance and training policies targeting adults. The range of MVPFs for

unemployment insurance policies generally falls between 0.4 and 1 (Solon 1985; Katz and

Meyer 1990; Chetty 2008; Landais 2015, Card et al. 2015; Kroft and Notowidigdo 2016;

49Hendren and Sprung-Keyser (2020) label the MVPF to be “infinite” in this situation.
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Johnston and Mas 2018). Studies of adult job training also often find modest benefits

relative to costs (Hollister et al. 1984; Couch 1992; Cave et al. 1993; Schochet et al. 2008;

Schochet 2018). Hyman (2018) shows TAA training is cost-effective compared to other

adult training programs, with an MVPF of 2.7. However, similarly to our finding for

RTAA wage insurance, Kostøl and Mogstad (2014) find that allowing DI recipients to keep

some benefits while working generates tax revenues that more than offset the DI payments.

10 Conclusion

The severe consequences of worker displacement, despite existing safety net policies,

motivate the consideration of new social insurance programs. We analyze the effects of the

wage insurance provisions of the U.S. Trade Adjustment Assistance (TAA) program using

employer-employee data from the Census Bureau’s LEHD dataset linked to

establishment-level petitions for TAA benefits. Wage insurance eligibility increases

short-run employment probabilities and leads to higher cumulative earnings in the long

run. These empirical results are quantitatively consistent with a standard non-stationary

partial equilibrium search model with endogenous search effort and duration dependence.

Wage insurance is a highly cost-effective policy in this context; the tax receipts on

increased earnings and reduced UI payments fully offset the costs of the program. The

program’s effectiveness primarily results from shorter non-employment spells, which allows

workers to avoid the negative consequences of duration-dependent wage offers.

The labor market effects we estimate are considerably more favorable than those found

in other wage insurance programs (Cahuc 2018). One reason for this difference might be

that wage insurance under TAA had less stringent eligibility requirements compared to other

programs, which required a 26-week reemployment deadline (Bloom et al. 2001) or program

application prior to taking up a new job (Stephan et al. 2016). Neither requirement applied

in our setting, and over 30 percent of wage insurance-eligible workers who become reemployed

took longer than 26 weeks to do so (Figure 9).

Although the wage insurance program we study here is available only to workers

affected by trade, our findings have implications for a broad set of workers. Both upstream

suppliers and downstream clients of firms facing trade competition are eligible for TAA, so

the program’s reach extends beyond narrow industries and geographic areas, and includes

the service sector. Additionally, wage insurance may be relevant for workers who lose their

jobs due to automation or other competitive forces that characterize today’s economy.

Automation is widely seen to be an important force in affecting labor markets over the

long-term (Abraham and Kearney 2020; Autor et al. 2022), with economically large

42



impacts on wages and employment (Acemoglu and Restrepo 2020). Various wage insurance

schemes have been proposed as potential alternatives or complements to the current UI

program, but these proposals have been hampered by a lack of evidence on how a

large-scale wage insurance program would function in the U.S. context. Our results help

inform researchers and policymakers as they pursue novel ways to address the challenges

faced by displaced workers in the coming years.

Future research could extend these results in a number of different directions. First,

research can estimate the effects of wage insurance on other important outcomes like

mortality, which has been shown to increase after job loss (Sullivan and Von Wachter

2009). Second, future work might explore the determinants of wage insurance take-up,

drawing on insights from incomplete participation in other social insurance programs and

means-tested benefits (Ko and Moffitt 2022). Finally, the wage insurance program we

study is relatively small and its institutional features preclude the ability of firms to adjust

wages in response to worker eligibility. Analyzing the general equilibrium effects of a

national wage insurance policy and implications for optimal policy design would inform

efforts to scale up wage insurance.
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A Institutional Details of Trade Adjustment Assistance and Wage
Insurance

A.1 Trade Adjustment Assistance

The Wage Insurance program that we study is part of the broader federal Trade
Adjustment Assistance (TAA) program, which provides assistance to workers adversely
affected by international trade.50 Specifically, the program serves “workers who lose their
jobs or whose hours of work and wages are reduced as a result of increased imports” (U.S.
Department of Labor, 2023). The program’s main benefits are funding for up to three years
of approved job training and extended unemployment insurance (UI) payments provided to
workers during training. TAA-eligible workers may also receive modest reimbursements for
job-search and relocation expenses and are eligible for the Health Coverage Tax Credit.

To be eligible for TAA benefits, a worker must be part of a group of adversely affected
workers that has successfully petitioned the Department of Labor for TAA certification. From
2009 onward, eligible workers may have produced goods or services prior to displacement.51

A TAA petition may be filed by the workers themselves, their firm, or their union or other
representative. U.S. Department of Labor investigators are tasked with determining whether
applicants were laid off by companies whose decline in sales was due to increased imports or
outsourcing, and have subpoena power to request confidential information from any given
firm or plant. The investigator seeks to verify the petition eligibility criteria, mainly a
substantial decline in employment and a decline in sales coincident with increased imports
or offshoring or production (19 U.S.C. §2272).52

Once investigators certify a petition associated with a given plant, all workers displaced
from that plant within the year preceding and two years following the petition filing date may
qualify for TAA, irrespective of who filed the associated petition (19 U.S.C. §2273,2291). In
addition to being part of a certified displacement, in order to receive TAA benefits, a worker
must have had at least 26 weeks of employment at $30 or more per week during the year
preceding displacement and sufficient prior earnings or employment to qualify for UI benefits
under state regulations (19 U.S.C. §2291).

Upon a petition’s approval, notice is published in local newspapers along with a
description of potential benefits, and likely-eligible workers receive written notice through
their state’s Department of Labor (or other cooperating state agency).53 In addition,
workers receive advance notification of plant closings and mass layoffs under the Worker
Adjustment and Retraining Notification (WARN) Act, which in most states triggers an
information session with State officials who provide details on available benefits (e.g. in
Pennsylvania, this is known as a “Benefits Rights Interview”, and includes information on
RTAA).

50See Hyman (2018) for additional detail on the main provisions of TAA.
51Training and Employment Guidance Letter No. 22-08, May 15, 2009.
52A substantial decline in employment is defined as “the lesser of 50 workers or 5 percent of the workers

within a firm” or 2 or more workers for firms with 50 or fewer workers (20 CFR 618.110). However, as shown
in Figure 3, the vast majority of firms with certified layoffs experience much larger contractions or shut down
entirely.

53See 19 U.S.C. §2275 and Training and Employment Guidance Letter No. 22-08, May 15, 2009, p.A-31.
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A.2 Wage Insurance

Beginning in 2002, the broader Trade Adjustment Assistance program included a pilot wage
insurance program known as “Alternative Trade Adjustment Assistance.” Our analysis
focuses on the permanent version, known as “Reemployment Trade Adjustment Assistance”
(RTAA), which went into effect in 2009. When an eligible worker finds reemployment at a
wage below their pre-displacement wage, they receive a subsidy covering up to 50 percent of
the gap between their old and new wages for up to two years.

To be eligible for wage insurance subsidy payments a worker must be eligible for the
broader TAA program, must find work at a different firm earning a lower wage than in
their pre-displacement job, and, critically for our research design, must be age 50 or over at
reemployment (19 U.S.C. §2318). This structure means that younger TAA-certified displaced
workers are eligible for standard TAA benefits, while older TAA-certified workers have access
to both standard TAA benefits and wage insurance. The wage insurance eligibility period
lasts two years, starting from the earlier of i) the date of reemployment or ii) the exhaustion
of state-funded UI benefits (26 weeks in most states, in the absence of federal extensions
for periods of high unemployment). This rule implies that, for example, if an unemployed
worker exhausts 26 weeks of state-funded UI and remains unemployed for an additional 6
months before finding a job paying less than their pre-displacement job, they can receive only
up to 1.5 years of wage insurance payments. Total subsidy payments per worker were also
capped at $12,000 in 2009-2011 and $10,000 thereafter, and workers were ineligible to receive
subsidy payments if their yearly earnings at reemployment exceeded $55,000 in 2009-2011
and $50,000 thereafter. In practice, the average wage insurance payment was about $5,600
per recipient.

Determining Subsidy Amounts

The subsidy amount is defined as 50% of the difference between annualized pre-tax wages
prior to separation and annualized reemployment wages.54 Annualized pre-displacement
wages are calculated as the product of the hourly wage rate in the last full week of
employment, the number of hours worked in that week, and 52. This calculation omits
overtime wages and hours, bonuses, and severance payments, which limits workers’ ability
to distort pre-displacement earnings in an effort to increase the wage insurance payment.
Annualized post-displacement wages are calculated similarly, but for the first full week of
employment in the new job. Recalls at pre-displacement employers are precluded from
wage insurance.55 Subsidy payments are made on a weekly, biweekly, or monthly basis, and
the responsible state agency reviews the worker’s wages on a monthly basis to adjust the
subsidy amount and ensure that the worker remains eligible given the benefit and yearly
earnings caps mentioned above.

Weekly earnings are generally calculated based on pay stubs submitted by the worker
to the responsible state agency and verified using administrative earnings records, rather

54The information in this paragraph is from Section H.7 of Training and Employment Guidance Letter
No. 22-08, May 15, 2009 unless otherwise noted.

55TEGL 05-15 Attachment A, section H.3.3, p. A-72: “To determine that a worker is eligible for RTAA,
the CSA must make a finding that the employment obtained by the worker is not at the “firm” from which
the worker was separated, that is, the “firm” identified in the certification.”
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than through communication with the employer. Subsidy payments are made directly to
the worker, generally through direct deposit into a personal bank account. In fact, based on
conversations with officials in state workforce departments, employers generally do not know
if one of their workers is receiving wage insurance payments.56 This limits the employer’s
ability to capture the subsidy, particularly given the small size of the program.

Workers may receive wage insurance when employed part-time, at least 20 hours per
week, if they are simultaneously enrolled in a TAA-approved training program. In this
case, subsidy payments are rescaled to reflect the number of hours employed.57 A person
who becomes self-employed after displacement may receive wage insurance, in which case
the responsible state agency calculates an approximate hourly wage in self-employment to
determine the subsidy amount.58

Because wage-insurance eligible workers are also eligible for standard TAA benefits,
the program includes various rules regarding how the programs interact. Once a worker
receives their first wage insurance payment, they are no longer eligible for extended
unemployment insurance payments under standard TAA.59 In contrast, a worker may
receive wage insurance after receiving extended UI payments under TAA, but with their
wage-insurance benefit period reduced in proportion to the amount of extended UI
payments received.60 As mentioned in the prior paragraph, part-time workers may receive
wage insurance benefits when simultaneously enrolled in TAA-approved training.

A.3 Program Generosity

The RTAA wage insurance program covers a very small share of unemployed workers in the
U.S. TAA Annual Reports provide the estimated number of workers covered by approved
petitions in each fiscal year. Starting in 2013, the reports additionally provide the median
age of program participants, which is age 50 or above in all years. Therefore, 0.5 times the
number of petition-covered workers is an upper bound on the number of newly RTAA-eligible
workers in that fiscal year. We compare this estimate to the number of new UI claims in
each fiscal year using weekly claims data provided by the U.S. Department of Labor. This
comparison implies that, during our sample period, less than 0.3 percent of those filing new
UI claims were eligible for wage insurance.

In Appendix Figure A.1, we further plot fiscal year expenditures for the various sub-
components of TAA. These include training and extended UI components of TAA, as well as
total spending on wage insurance (RTAA). We show these expenditures nationally, as well as
separately for the LEHD-covered set of 24 states and the District of Columbia. In Appendix
Figure A.2 below, we map the petition-estimated number of workers applying for TAA at a
finer geography level (commuting zones) for our analysis sample of the LEHD states from
2009 to 2014, to demonstrate our geographic coverage.

56This structure contrasts with wage subsidies provided directly to the employer. See Katz (1998).
57Training and Employment Guidance Letter No. 22-08, May 15, 2009, Section H.7 provides the relevant

formula.
58Training and Employment Guidance Letter No. 02-03, August 6, 2003, FAQ numbers 14 and 15.
59Training and Employment Guidance Letter No. 22-08, May 15, 2009, p.A-63.
60See Training and Employment Guidance Letter No. 22-08, May 15, 2009, p.A-57 and the updated version

in Training and Employment Guidance Letter No. 22-08 Change 1, November 20, 2009, which corrects a
typo in the benefits formula.

53



Figure A.1 – Trends in TAA spending and participation, FY2009-FY2022

(C) Total spending - US (D) Total spending - LEHD states

(E) Total participants - US (F) Total participants - LEHD states

Notes: TAA spending data from Department of Labor (OTAA Dashboard), available here: https:

//www.dol.gov/agencies/eta/tradeact/data; UI spending data available here: https://oui.doleta.

gov/unemploy/claims.asp. Data accessed February 24, 2023.

Figure A.2 – No. TAA Petitioning Workers by Commuting Zone, LEHD states 2009 - 2014

Notes: Data from Hyman (2018).
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B Data Appendix

This appendix describes our process to identify TAA-eligible workers in the LEHD data, for
whom age at displacement determines eligibility for wage insurance under RTAA. To focus
on this group of workers, we prioritize including workers who we can confidently identify as
TAA-eligible, while omitting others.

B.1 Identify TAA petitions in the LEHD

Step 1: Identify Petition Firm (EIN)

To identify workers involved in TAA-petitioning establishments, we match TAA
petitions to firms, and then identify workers at the appropriate establishment within the
firm using the 2014 LEHD snapshot. First, we follow Hyman (2018) and match the
establishment address and firm name reported in the petition data to the relevant firm’s
Employer Identification Number (EIN) using the Standard Statistical Establishment List /
Business Register (SSEL/BR) assembled between the Census and IRS. We implement
separate matches by address and by firm name within the petitioning firm’s state. If the
name and address matches yield EINs for different firms, we leave the petition unmatched
and return to it later. If within a state, both the address and the firm name match to the
same firm’s EIN, or if we can only match either the firm name or address to an EIN, we
keep the matched firm’s EIN. To ensure that we can match potentially shuttered plants to
firm EINs, we perform this exercise in both the calendar year of the petition (based on the
year US DOL received the petition, called the “institution date”), and the year preceding
the petition. If the two yield different EINs across years (but have unique EINs within
years), we assign the petition the matched EIN in the year preceding the petition. To
check the petition-firm match process up to this point, we take 3 random samples of 100
petitions, and manually verify that petition names and addresses match SSEL/BR primary
and secondary company names and addresses (SSEL/BR usually provides 2 names,
including one for the parent).

To ensure that we incorporate all firms whose workers took up wage insurance, we
manually check the petition-firm match for all petitions with at least one wage-insurance
taker. We identify these petitions using the Trade Act Participant Report (TAPR) data,
which provides information on workers who took up any TAA-related services. This manual
check compares the firm name, address, and supplementary “second” firm name (which
typically refers to any relevant parent/subsidiary distinction when reported) in the petition
against the same information in the SSEL/BR data. We check petitions that were matched
using the firm name and address procedure described in the preceding paragraph, updating
the EIN match as needed, and when possible match petitions that were unmatched using the
procedure in the preceding paragraph. We do so by first manually searching for the petition
address in the SSEL/BR. If the addresses match, subject to minor spelling discrepancies,
we confirm that the company name (including potential parents/subsidiaries) matches, and
then add that EIN to the list of petition matches. If we cannot find an address match,
we manually search for the petition company name in the SSEL/BR. If the company names
match (again subject to minor spelling discrepancies), we add that EIN to the list of matched
petitions. If we are still unable to find a match, we use additional public data from Google
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searches that link the name of the parent company and any subsidiaries. We then search for
these names in SSEL/BR, restricting the search to firms sharing the same locality (city or
town) as the petition address. In all such cases, we trace the EIN from the firm-level ECF to
the worker-level EHF and confirm that the EIN suffers a decline in workers of a similar order
of magnitude as that estimated in the petition data.61 For the sample of certified petitions,
we further confirm the quality of the match at this point by manually checking for matching
sequences of three consecutive quarters of earnings in TAPR with the EHF earnings data
and requiring that there be at least one individual-level match in TAPR to confirm the EIN
assignment at the worker level.62 If an EIN assignment meets these conditions, we add the
EIN to our list of matched petitions.

Step 2: Identify Petition Establishment (SEINUNIT)

Since TAA certifications apply to workers at a given plant rather than an entire firm,
we keep petitions that can be mapped to a unique LEHD establishment. Because the
LEHD is based on state UI records, which only provide the worker’s firm of employment
(SEIN), not their establishment, we implement this mapping using the following process.
The LEHD’s Employer Characteristics File (ECF) provides the list of establishments
(SEINUNIT) associated with each firm (EIN) by state and year. For cases where the
petition matches to a firm with a single establishment within a state-year pair, we
immediately have a unique establishment match, so we keep this petition and add it to the
analysis sample.

For cases where the petition matches to a firm with multiple establishments, or
multiple state firm identifiers (SEINs), we utilize additional information in an attempt to
identify a unique establishment associated with the petition. First, we use geocoded
petition addresses from Hyman (2018) to attain a unique county for each petition. If there
is a unique establishment in that county and EIN, we keep that establishment and add
that petition to the analysis sample. For remaining unmatched petitions, we identify the
county or counties associated with the city and state of the petition address using a
crosswalk between 2019 Census places (cities, villages, towns, townships) and counties from
Haughwout et al. (2022). If the petition city and state map to a unique county containing
a single matched establishment in the firm, we keep that establishment and add that
petition to the analysis sample.

For remaining unmatched petitions, we use a combination of a 2010 HUD mapping and
a similar mapping from Kondo (2018) which assigns counties to petition zip codes based on
the “majority of addresses within a zip code.” If the petition city and state map to a unique
county containing a single matched establishment in the firm, we keep that establishment
and add that petition to the analysis sample. We drop any remaining petitions that map to
multiple establishments within the same county, as our prior steps are unable to uniquely
identify the petitioning establishments

61We do this by checking all SEINs in the cases in which the EIN maps to multiple SEINs in the ECF.
62We are able to do this because TAPR data reports quarterly earnings prior to participating in a Trade

Act training program, often taken directly from state ES-202 data.
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B.2 Identify Workers Displaced from TAA-eligible Establishments in the LEHD

After establishments (SEINUNITS) with TAA-certified displacements have been identified,
our next goal is to identify workers who had a TAA-eligible unemployment spell. To do so,
we must identify displaced workers and determine whether the timing of their displacement
falls within the TAA eligibility window.

We observe employment spells using the LEHD Employee History File (EHF), which
contains quarterly worker earnings histories associated with each worker’s SEINUNIT at
which they are employed. The worker identifier is the personal identifier key (PIK), and
the establishment identifier is the SEINUNIT; we therefore have a dataset at the
PIK-SEINUNIT-QuarterYear level for the set of 25 states that approved use of the data in
our Census proposal.63 The LEHD provides the employing firm of these matched
participating workers within the state but does not specify their establishment within the
firm. To assign workers to establishments, we use the Unit-to-Worker (U2W) imputation
file, which imputes each worker’s establishment within a multi-establishment firm using
information on establishment size as well as the establishment and worker addresses. It
does so 10 times using a probabilistic Bayesian assignment method (note that the same
establishment may be drawn multiple times for each worker). We then assign each worker
to the single establishment with the most imputations for that worker (when two or more
establishments are tied for the most imputations, that worker is omitted from the
remainder of the process). We now have assigned all workers at petitioning firms to unique
LEHD establishments.

We also have an indicator variable at the PIK-QuarterYear level, which indicates
whether a worker was employed in any US state (the time coverage for this indicator varies
by state, but is available for about two-thirds of observations). This information helps
correct any spuriously tagged layoff events that may instead reflect continuous employment
in another state.64

Displaced workers are identified in two ways, keeping in mind that the LEHD only
reports earnings at the quarterly level. First, when we observe a full quarter of
non-employment (i.e. zero quarterly earnings in our 25 states and not employed in other
states), we have high confidence that the worker was displaced. Such workers comprise our
main sample. However, a displaced worker may transition to a new employer (an SEIN
distinct from the petitioning establishment) within two quarters, such that they do not
spend a full quarter unemployed and do not exhibit a quarter with zero earnings. In this
case, it is difficult to distinguish between displaced workers and those who voluntarily
switched employers. We refer to these workers as “switchers” and include them in a
supplementary “switcher-inclusive” sample.

Before including workers in the switcher-inclusive sample, we must avoid situations in

63These include AR, AZ, CA, CO, DC, DE, FL, IA, ID, IL, IN, KS, MD, ME, MO, MT, NM, NV, OK,
OR, PA, SC, TN, WA, WV.

64These are the EHF “US Indicators” data, which, when available, record with 100% certainty whether a
worker was employed at a UI-covered firm in the US in a given quarter. The US Indicators, however, tell us
nothing about earnings outside of the set of 25 states. While this may cause minor concern for our effects
on total earnings if wage insurance disproportionately induces workers to earn outside of the set of 25 states
via increased mobility, we do not observe a missing mass of workers on either side of the eligibility cutoff for
wage insurance that would emerge if this state selection issue were present.
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which workers appear to switch establishments based on a change in SEINUNIT resulting
from reorganizations that do not change the worker’s physical workplace. We use the LEHD
Successor-Predecessor File (SPF) to remove such workers from the switcher-inclusive sample.
When switching occurs within the set of 25 states in which we observe the SPF, we remove
workers from this sample if: (1) the firm reports workers were involved in a reorganization
(“ES-identified” in the SPF); or (2) 5 or more workers are observed transitioning in UI data
(“UI-identified” in the SPF) and the percent of workers at the predecessor firm transitioning
to the successor firm or from the predecessor firm is greater than 25%. When transitions
are into states where we do not have the SPF (but know their switching status from the US
Indicators file), we remove any switchers when 5 or more workers are observed transitioning
out of the 24-state set, as these may reflect relocations as well.

For each displacement event for a worker initially employed at a TAA-certified
establishment, we must determine whether the worker’s displacement falls within the
three-year “TAA eligibility window” around the petition determination date (notification
of petition approval or rejection).65 The first and last calendar quarters of this eligibility
window will likely include both workers who separate within the eligibility window (and are
thus eligible) and workers who separate outside the window in the same calendar quarter
(and are ineligible). We therefore apply a conservative sample restriction to avoid including
non-eligible workers: we drop workers who separate in the first quarter of the eligibility
window for the petition, or the last quarter of the eligibility window. While dropping these
workers avoids including those who separate outside the eligibility window, and so who are
not eligible, we also drop some eligible workers in the process. In the case that multiple
overlapping petitions are filed over several years and a worker has displacement events that
may apply to either petition, we assign the worker to the earlier petition. When a petition
at a given SEINUNIT is certified and it has an overlapping denied petition, we keep
workers who are displaced when the certified petition does not overlap the denied
petition.This procedure allows workers to have multiple TAA-eligible displacement events
as long as eligibility windows are non-overlapping. In these rare cases, the data may
contain copies of worker histories, but these histories are indexed to different quarters of
separation such that a worker’s earnings information is never duplicated within a calendar
quarter.

B.3 Pull Employment and Earnings Histories of Displaced Workers

Once eligible displaced workers have been identified, we calculate full earnings histories
by summing each worker’s quarterly earnings across all employers in the 24 LEHD states.
Earnings are set to zero even if the worker is employed outside of the 24-state set, and
therefore earnings are interpreted as specific to this set. By contrast, employment histories
are computed from both the 24 LEHD states and the US Indicators file covering remaining
states. When employment status is unknown in the US Indicators file due to lack of coverage,
and the worker does not have positive earnings in the 24-state set, we record employment
as missing. For each quarter, we record the “number of jobs” by counting the number of
different SEINUNITs at which the worker is employed. While we do not observe hours

65As explained in Hyman (2018), workers who can demonstrate a layoff event up to one year prior and
two years after the petition date qualify for TAA provisions, including wage insurance.

58



worked in the LEHD, the number of jobs may provide a proxy for part-time work within
the 24-state set.66 To study SEINUNIT transitions, we define a primary employer for each
worker in a given quarter. If the worker has positive earnings from the TAA-petitioning firm,
that is their primary employer.67 Otherwise, the SEINUNIT with the most earnings in the
quarter is the primary employer.68

As our primary objective is to study non-employment rather than unemployment
(including distinctions regarding disillusionment), we choose to code earnings in panel
edges (i.e. strings of zero quarterly earnings at the beginning or end of a worker’s panel) as
zeros rather than missing, except when a worker has zero earnings but is employed in a
non-LEHD state, in which case we treat earnings as missing. Alternatively, one could code
earnings in these quarters as missing, but doing so would condition on the endogenous
employment outcome. We define highly attached workers as workers who have quarterly
earnings of at least $3,000, 8 to 5 quarters prior to separation. We merge individual
demographic variables from the LEHD ICF file (gender, age, race, ethnicity), and firm-level
variables from the ECF (firm size in number of workers, firm age in years, and firm NAICS
code (concorded over time and cross-checked within the ECF) at the SEIN level).69 We
calculate employee tenure as the number of consecutive months of overall employment, as
well as firm-specific tenure as the number of consecutive months a worker is employed at a
given SEIN.

B.4 TAA-Denied Sample

Our main sample described above uses TAA petitions that were approved by the US
Department of Labor (USDOL) during the RTAA eligibility period (i.e. all approved
petition numbers greater than number 70,000—the first petition eligible under RTAA in
2009). However, TAA-petitioning establishments that are denied under the RTAA regime
provide an additional placebo group to understand the evolution of labor market behavior
of similar workers absent wage insurance eligibility.70 To identify petitioning
establishments whose workers are denied benefits under the RTAA regime, we repeat the
steps above, with a handful of refinements to account for the context of denied petitions.

First, when selecting the petitioning establishment among multi-establishment firms,
the TAPR dataset is unhelpful as it only contains information on approved petitions. It
is also the case that we are unable to create an analog of potentially high take-up denied
firms as we do in the main sample. Second, when refining our sample using manual lookups,
instead of cross-checking all petitions with at least one wage-insurance taker, we must use
information on the estimated number of eligible workers on the petition. To reduce this set
computationally, we cross-check all petitions for which there is a sizable estimated number of

66Although hours are reported on UI-records in Minnesota and Washington, the Census requires three
states for any disclosed LEHD estimate, and our data does not include Minnesota.

67Workers at contracting employers may exhibit an “Ashenfelter” dip, which could result in it no longer
being the majority employer from which the worker garnishes wages.

68We use this same definition when defining the “switcher-inclusive” sample.
69We also merge in ICF data on education, however this is imputed for % of the sample, unless the worker

reported education level in the decennial Census or was part of the annual ACS sub-sample.
70Hyman (2018) shows that an important portion of the variation in TAA (and therefore RTAA) eligibility

is due to whether the petition is randomly assigned a lenient versus strict USDOL investigator.
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workers, as these are most likely to be multi-establishment firms. We manually cross-check
all petitions with at least 100 estimated workers reported on the petition. Lastly, to ensure a
sufficiently large sample during the RTAA period, we do not make any further restrictions on
geography when attempting to identify the petitioning denied plant. Finally, with respect to
overlapping petitions, our denied sample is similarly defined as including separating workers
in all quarters in which there are no overlapping approved petitions, excluding workers who
separate in the first quarter of the eligibility window for the petition, or the last quarter of
the eligibility window.
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C Additional Results

Figure C.1 – Density of Age at Separation

(A) TAA-certified sample (B) TAA-denied sample

Notes: Panels A and B plot distribution of age at separation for the TAA-certified and TAA-denied samples,
respectively. Samples are restricted to high labor force attachment, defined as earning at least $3,000 in each
quarter from 8 to 5 quarters prior to separation. Graphs plot densities estimated separately on each side of
the cutoff using the methods in Cattaneo et al. (2018). Census disclosure rules prevent showing histograms.
There is no evidence of manipulation in either sample.
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Figure C.2 – Descriptive Event Studies of Earnings Replacement and Employment by Age

(A) TAA-certified, employment (B) TAA-denied, employment

(C) TAA-certified, earnings replacement (D) TAA-denied, earnings replacement

Notes: Panels A and B plot employment rates for the certified and denied samples, respectively. Panels
C and D plot earnings replacement rates for the certified and denied samples, respectively. Samples are
restricted to high labor force attachment in the second year before displacement, defined as 4 quarters with
UI-covered earnings each exceeding $3,000.
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Figure C.3 – Wage Insurance Receipt among Workers Receiving any TAA Benefit

Notes: Figure plots the proportion of workers receiving any TAA benefits who ever receive wage insurance
payments using data from Trade Act Participant Reports. Means are calculated within quarterly age bins,
with age measured at separation. The solid lines show linear polynomials fit on the raw data using age
measured in days, with separate polynomials above and below age 50. Workers displaced between ages
[48.5,50) are excluded from the polynomial fit below age 50 as denoted by the hollow circles for those ages.
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Table C.1 – Covariate Balance in RD, TAA-certified sample

Discontinuity S.E. Control Mean % diff

Predicted Prior Earnings in -8Q to -5Q 1,329 816.4 47,680 2.8
Prior Earnings in -1Q 104.8 314.2 11,310 0.9
Prior Earnings in -5Q 100.5 288.8 11,900 0.8
Prior Earnings in -6Q 267.1 275.9 11,810 2.3
Prior Earnings in -7Q 408.8 293.5 11,920 3.4
Prior Earnings in -8Q 281.3 298 11,910 2.4
Prior Earnings in -8Q to -5Q 1,019 1,082 47,630 2.1
∆ Prior Earnings from -8Q to -5Q 296.3 212.7 43.68 678.3
Less Than High School 0.028 0.017 0.097 28.9
High School -0.077 0.026 0.457 -16.8
Some College 0.013 0.024 0.303 4.3
College or Higher 0.033 0.019 0.152 21.7
Female -0.038 0.022 0.367 -10.4
Black -0.007 0.014 0.094 -7.4
White 0.002 0.017 0.858 0.2
Other Race 0.005 0.010 0.049 10.2
Hispanic -0.022 0.011 0.050 -44.0
Overall Tenure (quarters) -0.259 0.820 63.96 -0.4
Petitioning-Firm Tenure (quarters) -0.097 1.009 33.57 -0.3
Firm Age (years) 0.505 0.495 29.22 1.7
Log Firm Size -0.023 0.079 7.731 -0.3
Year of filing 0.085 0.068 2010 0.0

Notes: Table presents balance tests of estimating equation (7) on baseline covariates and pre-separation
outcomes. The discontinuity measures the jump in the regression function at age 50. The Control Mean
denotes the regression estimate immediately to the left of age 50 for the TAA-certified sample. Each
regression uses MSE-optimal bandwidths calculated separately for each side of the cutoff and for each
outcome, and a uniform kernel to weight observations. Sample sizes for each regression vary depending on
the bandwidth used. We report full sample size prior to bandwidth selection (N = 28, 000) due to Census
disclosure rules. Predicted earnings are calculated from a regression of earnings 8Q-5Q before separation
against firm tenure, log firm size, firm age, year of filing, and fixed effects for education, race, state, and
3-digit industry.
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Table C.2 – Covariate Balance in RD, TAA-denied sample

Discontinuity S.E. Control Mean % diff

Predicted Prior Earnings in -8Q to -Q 416.7 853.3 50,120 0.8
Prior Earnings in -1Q 76.4 338.2 10,950 0.7
Prior Earnings in -5Q 159.9 297.2 12,510 1.3
Prior Earnings in -6Q 300.2 291 12,660 2.4
Prior Earnings in -7Q 447.5 304.6 12,480 3.6
Prior Earnings in -8Q 507.9 331.6 12,550 4.0
Prior Earnings in -8Q to -5Q 1362 1,152 50,260 2.7
∆ Prior Earnings from -8Q to -5Q 238.9 162.7 92.33 258.7
Less Than High School 0.009 0.013 0.106 8.5
High School -0.008 0.021 0.328 -2.4
Some College -0.011 0.016 0.33 -3.3
College or Higher -0.007 0.018 0.238 -2.9
Female 0.017 0.017 0.379 4.5
Black -0.006 0.013 0.146 -4.1
White -0.008 0.014 0.784 -1.0
Other Race 0.021 0.011 0.07 30.0
Hispanic 0.024 0.01 0.08 30.0
Overall Tenure (quarters) -0.79 0.744 65.06 -1.2
Petitioning-Firm Tenure (quarters) -0.104 0.764 27.95 -0.4
Firm Age (years) -0.079 0.319 31.56 -0.3
Log Firm Size 0.15 0.082 9.236 1.6
Year of filing -0.016 0.063 2011 0.0

Notes: Table presents balance tests of estimating equation (7) on baseline covariates and pre-separation
outcomes. The discontinuity measures the jump in the regression function at age 50. The Control Mean
denotes the regression estimate immediately to the left of age 50 for the TAA-denied sample. Each
regression uses MSE-optimal bandwidths calculated separately for each side of the cutoff and for each
outcome, and a uniform kernel to weight observations. Sample sizes for each regression vary depending
on the bandwidth used. We report full sample sizes prior to bandwidth selection (N = 48, 500) due to
Census disclosure rules. Predicted earnings are calculated from a regression of earnings 8Q-5Q before
separation against firm tenure, log firm size, firm age, year of filing, and fixed effects for education, race,
state, and 3-digit industry.
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Table C.3 – Covariate Balance in D-RD

Estimate S.E. Control Mean % diff

Predicted Prior Earnings in -8Q to -5Q 582 984 46,780 1.2
Prior Earnings in -1Q -174.3 487.3 11,300 -1.5
Prior Earnings in -5Q -34.9 415.7 11,860 0.3
Prior Earnings in -6Q 41.86 426.5 11,800 0.4
Prior Earnings in -7Q -41.35 453.6 11,940 -0.3
Prior Earnings in -8Q -81.61 473.0 11,880 -0.7
Prior Earnings in -8Q to-5Q 245.5 1,658 47,480 0.5
∆ Prior Earnings from -8Q to -5Q -78.6 281.9 41.0 -191.8
Less Than High School 0.031 0.022 0.088 35.2
High School -0.052 0.030 0.455 -11.4
Some College 0.008 0.027 0.300 2.7
College or Higher 0.026 0.026 0.154 16.9
Female -0.049 0.028 0.367 -13.4
Black 0.000 0.020 0.147 0.0
White 0.003 0.021 0.856 0.4
Other Race -0.011 0.015 0.047 -23.4
Hispanic -0.033 0.016 0.053 -62.3
Overall Tenure (quarters) 0.443 1.160 64.28 0.7
Petitioning-Firm Tenure (quarters) 0.514 1.265 33.22 1.5
Firm Age (years) 0.667 0.558 29.16 2.3
Log Firm Size -0.184 0.123 7.731 -2.4
Year of filing 0.050 0.094 2010 0.0

Notes: Table presents balance tests of estimating equation (8) on baseline covariates and pre-
separation outcomes. Each row corresponds to a separate regression. The difference in discontinuities
measures the jump in the regression function at age 50 for the TAA-certified sample relative to the
TAA-denied sample. The Control Mean denotes the regression estimate of that outcome immediately
to the left of age 50 for the TAA-certified sample. Each regression uses MSE-optimal bandwidths
calculated separately for each side of the age-50 discontinuity for each outcome, and a uniform kernel
to weight observations. Sample sizes for each regression vary depending on the bandwidth used. We
report full sample sizes prior to bandwidth selection (N = 76, 500) due to Census disclosure rules.
Predicted earnings are calculated from a regression of earnings 8Q-5Q before separation against firm
tenure, log firm size, firm age, year of filing, and fixed effects for education, race, state, and 3-digit
industry.
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Figure C.4 – Robustness: D-RD Estimates without 1-Sided Donut

(A) Earnings replacement (B) Employment

Notes: Panels plot D-RD estimates for earnings replacement (Panel A) and employment (Panel B) for
regressions that do not include the one-sided donut. Shaded areas denote 90% confidence intervals. Samples
are restricted to high labor force attachment in the second year before displacement, defined as 4 quarters
with UI-covered earnings each exceeding $3,000. Each regression uses MSE-optimal bandwidths calculated
separately for each side of the cutoff and for each outcome, and a uniform kernel to weight observations.
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Figure C.5 – Robustness: Regression Kink (RK) Estimates

(A) Earnings replacement (B) Employment

Notes: Panels plot estimates for earnings replacement (Panel A) and employment (Panel B) using a regression
kink (RK) design. The eligibility rule for wage insurance introduces two kinks, which correspond to the edges
of the donut used in the main analysis. The position of the lower kink varies with the quarter relative to
separation, while the higher kink is anchored at age 50. Specifically, the position of the lower kink (k1) in

relative quarter t is equal to max{50− min(t,6)
4 , 48.5}. The RK incorporates variation “inside” the donut hole

by estimating the change in the slope of the outcome as a function of how much time workers are eligible:
workers are always eligible above age 50, they are never eligible below k1, and the fraction of time they are
eligible scales linearly between age 50 and k1. We estimate a single “joint” RK design using both kinks
together, assuming no jumps at the kink points and equal slopes of the outcome variable with respect to
age to the left of the lower kink and to the right of the higher kink. This yields the following constrained
regression equation yi = α + β(agei − k1) + γ · Bi · (agei − k1) + δ · Bi + εi where Bi is an indicator for
ages between the kinks, and δ is constrained to be equal to (k1 − 50) · γ. Equivalently, one can estimate
yi = α+ β(agei − k1) + γ ·max{0,min{50− k1, agei − k1}}+ εi without constraints. Figures plot estimates
of γ from these regressions in each relative quarter of separation. Shaded areas denote 95% confidence
intervals. As in the main results, samples are restricted to high labor force attachment in the second year
before displacement, defined as 4 quarters with UI-covered earnings each exceeding $3,000. Each regression
uses MSE-optimal bandwidths calculated separately for each side of the cutoff and for each outcome (the
same as those used in the main results), and a uniform kernel to weight observations.
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Figure C.6 – Robustness: D-RD Estimates, All Petitions without ML Restriction

(A) Earnings replacement (B) Employment

Notes: Panels plot D-RD estimates for earnings replacement (Panel A) and employment (Panel B) for all
petitions, including those excluded from the ML sample. Shaded areas denote 95% confidence intervals.
Samples are restricted to high labor force attachment in the second year before displacement, defined as 4
quarters with UI-covered earnings each exceeding $3,000. Each regression uses MSE-optimal bandwidths
calculated separately for each side of the cutoff and for each outcome, and a uniform kernel to weight
observations.
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Figure C.7 – Sensitivity of ITT Estimates to Predicted Probability Cutoffs for High Take-Up

Notes: Figure plots D-RD estimates for cumulative earnings 16 quarters after displacement, for 10 deciles of
ML predicted probability cutoffs used to define high take-up in the “certified” sample. In the first decile (least
restrictive), all petitions are included in the ML sample, and estimates are thus identical across all three ML
classifiers. In the tenth decile (most conservative), only the top 10% of predicted probabilities are included
in the ML sample. Across all classifiers, estimates are generally increasing in decile cutoffs, with D-RD
effect sizes ranging from about $12,000 to $22,000, and with greatest precision for ML high-take-up cutoffs
between the 40th and 70th percentiles of the predicted probability distribution. Our preferred estimate of
$18,260 reported in Figure 8 corresponds to the random forest classifier (rfc) predicted probability cutoff of
0.2858 to be identified as high take-up (see Appendix D for further details).
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Figure C.8 – Falsification test: RD Results using Age 55 Cutoff

(A) TAA-certified, earnings replacement (B) TAA-denied, earnings replacement replacement

(C) TAA-certified, employment (D) TAA-denied, employment

Notes: Panels A and B plot earnings replacement rates for the TAA-certified and TAA-denied samples,
respectively, using age 55 as the discontinuity. Panels C and D plot corresponding figures for employment
rates, again using the age 55 discontinuity. Shaded areas denote 95% confidence intervals. Samples are
restricted to high labor force attachment in the second year before displacement, defined as 4 quarters
with UI-covered earnings each exceeding $3,000. Each regression uses MSE-optimal bandwidths calculated
separately for each side of the cutoff and for each outcome, and a uniform kernel to weight observations.

71



Figure C.9 – Earnings Replacement Conditional on Employment

Notes: Figure plots D-RD results of earnings replacement rates conditional on employment from estimating
equation (8) from 8 quarters pre-separation to 16 quarters post-separation. Earnings replacement rates are
calculated as earnings relative to the average from the second year before displacement, deflated to 2018Q1
dollars prior to calculating the replacement rate. Shaded areas denote 95% confidence intervals. Sample
is restricted to high labor force attachment in the second year before displacement, defined as 4 quarters
with UI-covered earnings each exceeding $3,000. Each regression uses MSE-optimal bandwidths calculated
separately for each side of the cutoff and for each outcome, and a uniform kernel to weight observations.

Figure C.10 – Hazard of Reemployment

Notes: Figure plots D-RD estimates using equation (8) from 1 quarter to 12 quarters since separation,
where dependent variable is the hazard rate of employment. Notably, statistically significant effects of wage
insurance eligibility on the hazard of reemployment are only detected 1 quarter from separation. Each
regression uses MSE-optimal bandwidths calculated separately for each side of the cutoff, and a uniform
kernel to weight reservations
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Figure C.11 – MVPF using lower bound of 95% CIs

Notes: Figure plots MVPFs vs. wage insurance (WI) payments per eligible worker using the lower bounds of
the 95% confidence intervals for cumulative earnings and unemployment durations from the D-RD estimates.
To illustrate the importance of fiscal externalities, dashed lines show the MVPFs excluding tax receipts on
increased earnings and reduced UI payments and solid lines show the MVPF including fiscal externalities.
For visual clarity, we truncate the MVPFs at 15 from above and indicate with red vertical lines the subsidy
value at which fiscal externalities exceed program costs (i.e. where MV PF =∞).
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Additional Details of Earnings Decomposition: Each term in the statistical
decomposition of cumulative earnings maps to a D-RD estimate. Recall that the effect of
wage insurance eligibility on cumulative earnings can be written as follows.

E

[∑
t

earnit|Di = 1

]
− E

[∑
t

earnit|Di = 0

]
=
∑
t

(E [earnit|Di = 1]− E [earnit|Di = 0])

The decomposition is:

E [earnit|Di = 1]− E [earnit|Di = 0] =

E[earnit|Di = 1, empit = 1]× (P(empit = 1|Di = 1)− P(empit = 1|Di = 0))

+(E[earnit|Di = 1, empit = 1]− E[earnit|Di = 0, empit = 1])× P(empit = 1|Di = 0)

To implement the decomposition, we must separately calculate the values of the second
and third lines and then sum them across years to calculate the overall contribution of each
component. We can do so by running our standard RD analysis for earnings on a sample of
employed workers in each period, where:

• E[earnit|Di = 1, empit = 1] is the earnings replacement among employed workers who
are treated. It is estimated as γt0 + γt1 from equation (8) where the dependent variable
is earnings conditional on employment.

• (P(empit = 1|Di = 1)−P(empit = 1|Di = 0)) is the change in employment probability
due to treatment. It is estimated as γt3 from equation (8) where the dependent variable
is employment.

• (E[earnit|Di = 1, empit = 1] − E[earnit|Di = 0, empit = 1]) is the change in earnings
(in levels) from treatment among those employed. It is estimated as γt3 from equation
(8) where the dependent variable is earnings conditional on employment.

• P(empit = 1|Di = 0) is the probability of employment among those who are not treated.
It is estimated as γt0 from equation (8) where the dependent variable is employment.
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D Predicted High-Takeup Sample Using Machine Learning

D.1 Objective and Summary

Because we study the effects of wage insurance eligibility on worker outcomes, our analysis
may struggle to identify any effects of the program if takeup is very low. Program reports and
discussions with administrators raise concerns that many eligible workers were not aware of
the A/RTAA wage insurance program, potentially explaining low takeup rates, particularly
early in the program’s implementation. To address this issue, we identify the types of
petitions in which wage insurance takeup was historically high. We do so using data from
the Trade Act Participant Reports (TAPR) from 2005 to 2011, which record the number of
wage insurance participants associated with each approved TAA petition. We use data from
this period to train a machine learning (ML) classifier that identifies high-takeup petitions
based on their observable characteristics and use this model to predict which petitions are
likely to have high takeup in the post-2011 data, where the realized takeup rate is not
observable.

We implement this classification nonparametrically using a standard ML classification
process that takes the following steps: The labeled data (covering 2005 to 2011) are split
into training and testing samples. The training sample is used to fit a given model, and the
testing sample is used to determine the model’s accuracy in predicting the classification out
of sample. The training process involves choosing a set of “hyperparameters” determining
various aspects of the model’s structure, for example the maximum depth in tree-based
models. This choice of hyperparameters is analogous to using fitting rules that restrict
the number of higher order polynomials or that bound the set of all possible interaction
terms in a regression. These hyperparameters are chosen through cross-validation, in which
the training sample is split into equally sized portions, the model is fit on all the training
data except one held-out portion, and its predictive accuracy is evaluated on the held-out
portion. The process is then repeated for each of the hold-out samples. We choose optimal
hyperparameters as those maximizing predictive precision conditional on achieving at least a
target level of recall (our preferred metric of predictive accuracy, discussed in detail below).
Once optimal hyperparameters are chosen in the training sample, we fit the model on all of
the training data and verify the quality of the classification model out-of-sample by testing
our predictions in the testing sample. Given favorable results in the testing sample, we use
the model to classify all petitions as high or low takeup, including those in the post-2011
data without observable takeup. We then generate a subsample of workers associated with
petitions predicted to have high takeup.

D.2 High-Takeup Definition

We calculate the takeup rate as the number of observed wage-insurance recipients falling
under a given TAA petition in the TAPR data divided by the number of estimated TAA-
eligible workers reported for the associated petition. We define “high takeup” petitions as
those with an observed takeup rate of at least 2%. While this cutoff may seem low, it likely
reflects a much higher takeup rate among wage-insurance-eligible displaced workers, for two
reasons. First, the petition data tend to overestimate the number of eligible workers by a
factor of 2 to 3, so the denominator in the observed takeup rate is quite a bit larger than

75



the true number of TAA-eligible workers. Second, because only those age 50 or over at
displacement are eligible for wage insurance, the denominator in the observed takeup rate is
again too large, since it includes both older and younger workers. Among relevant petitions
in the 2005 to 2011 range, 13% satisfy our definition of “high takeup.”

D.3 Approach

Our objective is to generate a sample consisting primarily of high-takeup petitions (true
positives) while avoiding missing many high-takeup petitions (false negatives). With that
goal in mind, we employ a 10-fold cross validation procedure to select hyperparameters
specific to each model. The predictive accuracy metric that we target in cross validation
is maximum precision conditional on achieving at least a specified level of recall. This
metric allows us to maximize the share of true high-takeup firms among those chosen (max
precision) while setting a cap on the share of true high-takeup firms not chosen (target
recall). Algorithm 1 describes the calculation of this predictive accuracy metric in detail.
For a given classification model, we assign a prediction of 1 to observations whose posterior
probabilities (scores) exceed a given cutoff. We choose the cutoff that maximizes precision
among all those that satisfy the recall target. The resulting value of precision is our predictive
accuracy metric for that model.

Algorithm 1: Max Precision for Target Recall

Data: True Classification (YTrue), Predicted Probabilities from Model
(p = P(YModel == 1)), and Target Recall Cutoff (k).

Result: Maximum precision given target recall cutoff k ≡ Obj
1 begin
2 Recall Target[·]←− ∅
3 Precision Target Scores[·]←− ∅
4 i←− 0
5 for c ∈ [min(p),max(p)] do
6 Ypred ←− (p > c)
7 Recall Target[i]←− (recall(YTrue, Ypred) > k)
8 Precision Target Scores[i]←− precision(YTrue, Ypred)
9 i++

10 end
11 if max(Recall Target) = 0 then
12 Obj ←− 0
13 else
14 Obj ←− maxj(Precision Target Scores[j] | Recall Target[j] == 1)
15 end

16 end

An additional issue in our context stems from the fact that our outcome variable is
imbalanced, with only 13% of the petitions in our training data classified as high takeup.
This poses a challenge for predictive modeling, as most machine learning algorithms used
for classification assume an equal number of examples for each class. This results in models
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that have poor predictive performance, specifically for the minority class, which in our case
is the set of high-takeup firms. We address this issue as follows. Certain models (e.g.
EasyEnsemble) balance the data internally as part of the algorithm. Otherwise, we
oversample the minority class (high-takeup firms) to compensate for the imbalance. While
we could also undersample the majority class to address this concern, given our relatively
small sample size (in machine learning terms), we have opted to risk overfitting in the
training sample rather than risk losing information that might be critical to our
classification out-of-sample.

Algorithm 2 describes our main classification algorithm. As already mentioned, the
approach it describes is entirely standard. We present it here simply for clarity and
completeness. We first randomly split the sample of labeled data into training (N ) and
testing (N 0) sets, corresponding to 90% and 10% of the sample, respectively. We choose
hyperparameters h using 10-fold cross-validation within the 90% training sample, targeting
a maximum precision given recall of at least 0.7.71 For each fold, we fit the model to the
training data omitting the cross-validation hold-out set (N−i), generate posterior
probabilities in the hold-out set, and calculate the max precision given target recall in the
hold-out set. We store these max precision values for each fold and average them across
folds to calculate the average precision score for a given vector of hyperparameters.

We then select the hyperparameter vector h∗ that maximizes this average precision
given target recall metric. Using the optimal hyperparameters, we fit the model to the entire
training sample and use the fitted model to predict takeup in the testing set. We record the
max precision at target recall metric in the testing set to evaluate the model’s out-of-sample
performance and record the associated posterior probability cutoff, k∗. Finally, we fit the
model to the entire sample of labeled data (N ∪ N 0) and use it to predict takeup for the
entire dataset (N ∪N 0 ∪M), including observations in the unlabeled data (M), post 2011.
Observations with posterior probability greater than k∗ are classified as high takeup.

71Our main analysis uses a target recall cutoff of 0.7, but we investigate the implications of varying that
cutoff in Figure D.2 below.

77



Algorithm 2: Predicting High Takeup Petitions

Input:
model : The classification model, model(h) represents the model endowed with
hyperparameter h
H: Hyperparameter space
k: Target recall cutoff
K: Number of folds in cross validation
N : Set of training observations, balanced with under-sampling
N−i ∈ N : the hold-out subset during the ith cross validation
N 0: Set of testing observations
M: Set of unlabeled observations
Data:
max precision for target recall: a function that computes the maximum
precision given a target recall cutoff, described in Algorithm 1
Result:
h∗: The optimal hyperparameter vector searched via cross validation
p∗: The optimal posterior probability cutoff
Ypred: Predicted classfication based on model(h∗)

1 begin
2 Avg Precision Scores[·]←− ∅
3 for h ∈ H do
4 Max Precision Scores[·]←− ∅
5 for i ∈ 1 : K do
6 N−i ←− the hold out set of observations
7 NTrain ←− N\N−i
8 NValid ←− N−i
9 model(h).f it(NTrain)

10 p←− model.predict proba(NValid)
11 Max Precision Scores[i]←− max precision for target recall(data =

NValid, predicted prob = p, recall cutoff = k)
12 end
13 Avg Precision Scores[h]←− mean(Max Precision Scores)

14 end
15 h∗ ←− argmax(Avg Precision Scores[·])
16

17 model(h∗).f it(N )
18 p←− model .predict proba(N 0)
19 Model Max Precision, k∗ ←− max precision for target recall(data =

N 0, predicted prob = p, recall cutoff = k)
20

21 model(h∗).f it(N ∪N 0)
22 p←− model .predict proba(N ∪N 0 ∪M)
23 Ypred ←− (p > k∗)

24 end
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D.4 Model Selection

We consider the following models in classifying petitions:

• Logit l2: Logistic Regression with l2 norm penalty.

• LDA: Linear discriminant analysis using MLE.

• NB: Naive Bayesian Model.

• RFC: Random Forest Classifier.

• AdaBoost: AdaBoost Classifier with decision tree estimator as base.

• CatBoost: CatBoost Classifier with decision tree estimator as base.

• EE: Easy Ensemble using AdaBoost Classifier with decision tree estimator as base.

Table D.1 records the performance of each model in our testing sample using the optimal
parameters for each model selected using cross validation. Given this out-of-sample
performance, we focus the remainder of our analysis on RFC, Catboost, and EE in more
detail as potential candidates for our final classification model.

Table D.1 – Out-of-Sample (Testing Set) Performance, 2005Q1 - 2010Q4

Accuracy F1 Precision Recall Geometric Mean
Logit l2 0.597 0.669 0.567 0.817 0.307
LDA 0.593 0.653 0.569 0.766 0.322
NB 0.587 0.647 0.565 0.756 0.316
RFC 0.654 0.675 0.636 0.721 0.423
Adaboost 0.570 0.664 0.545 0.850 0.247
Catboost 0.671 0.710 0.634 0.807 0.432
EE 0.663 0.676 0.651 0.703 0.438

Notes: The table displays our measures of out-of-sample performance in the testing set for
different classification models. Accuracy is a weighted arithmetic mean of Precision and
Inverse Precision (weighted by Bias) as well as a weighted arithmetic mean of Recall and
Inverse Recall (weighted by Prevalence). Precision is the fraction of relevant instances
among the retrieved instances. Recall is the fraction of relevant instances that were
retrieved. The F1 score is the harmonic mean of the precision and recall. The geometric
mean is the root of the product of class-wise sensitivity. This measure seeks to maximize
the accuracy on each of the classes while keeping these accuracies balanced. The sample
consists of participants in TAA from the TAPR data and estimates of participants from
the TAA Petition data from 2005Q1 through 2010Q4. Takeup rates are winsorized to the
1st and 99th percentiles.
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D.5 Hyperparameters

During cross validation, we consider the following hyperparameters for each of the three
model candidates (RFC, Catboost, and EE). These parameters were chosen to avoid
overfitting to the training data, enhancing model’s performance out of sample. The
numbers in parenthesis report the optimal hyperparameter values (h∗).

• RFC

– n_estimators (300)

Number of base estimators (decision trees) in the forest

– min_sample_split (2)

The minimum number of observations required at a node to be considered for
further split

– min_sample_leaf (5)

The minimum number of observations required to be considered feasible for
constructing a new node from splitting

– max_depth (16)

The maximum depth of each base estimator

• Catboost

– n_estimators (110)

Number of base estimators (decision trees) in the forest

– subsample (0.6)

Proportion of sample for bagging

– learning_rate (0.1)

Step size for moving along the gradient’s direction

– min_data_in_leaf (2)

The minimum number of observations required to be considered feasible for
constructing a new node from splitting

– max_depth (10)

The maximum depth of each base estimator

• EE(Choose Adaboost as base classifier)

– n_estimators(EE) (80)

Number of Adaboost in the EE model

– n_estimators(Adaboost) (80)

Number of base estimators (decision trees) in each Adaboost model

– max_depth (15)

The maximum depth of each decision tree

– learning_rate (0.2)

Step size for moving along the gradient’s direction
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D.6 Results

Figure D.1 Panels (A) and (B) present standard performance metrics for the models’ ability
to categorize observations in the testing set (i.e. out of sample).

In Panel (A), the ROC curve plots the true positive rate (true positives over all relevant
elements; equivalent to recall) on the y-axis and the false positive rate (false positives over all
non-relevant elements) on the x-axis. The plot is generated by varying the cutoff probability
in the posterior probability distribution for each model. As a higher true positive rate
and a lower false positive rate is preferred, curves lying to the northwest indicate superior
performance. In this case, the top three models perform very similarly on this metric.

Panel (B) presents a similar figure showing precision (true positives over all selected)
on the y-axis and recall (true positives over all relevant elements) on the x-axis. Again, this
plot is generated by varying the cutoff probability in the posterior probability distribution
for each model. As precision and recall are both desirable, curves lying to the northeast
indicate superior performance. As with ROC, the top three models perform very similarly
on this metric.

As discussed above, we use the prediction accuracy metric of max precision given target
recall in selecting optimal hyperparameters through cross validation. Our main analysis uses
a target recall cutoff of 0.7, but we investigated the implications of varying that cutoff.

Figure D.1 – ROC and Precision-Recall

(A) ROC Curve (B) Precision-Recall Curve

Figure D.2 shows each model’s predictive precision in the testing set (out of sample)
when using hyperparameters selected subject to different recall cutoff values, ranging from
0.5 to 0.9. Although there appears to be a lot of variation, note that the y-axis scale is
quite fine; the precision values are quite similar across models and do not vary much with
the recall cutoff. This is consistent with our observation that the optimal hyperparameters
do not change substantially when varying the recall cutoff. This suggests that, at least in
the 0.5-0.9 range, varying the recall cutoff does not meaningfully affect our findings. Note
that because each point on these curves represents a non-parametric model with potentially
different hyperparameters, the curves need not be downward sloping.
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Figure D.2 – Max Precision Given Target Recall

Notes: For each recall cutoff, we cross validate over the hyperparameter space, and train the model with the

optimal hyperparameters, then plot each model’s out-of-sample precision in the testing set for the relevant

recall cutoff.

Figure D.3 Panel (A) presents confusion matrices showing the relationship between
each model’s classification and the true labels. The number of true positives is in the lower
right, true negatives in the upper left, false positives in the upper right, and false negatives
in the lower left. The three models all perform very similarly.

Figure D.3 Panel (B) examines the extent to which the three models select the same
petitions. There is very strong agreement across the three models, with particularly small
differences between RFC and CatBoost. These results are quite encouraging, as they suggest
that the three models will yield similar high-takeup subsets of the data.

Because our identification comes from differences in eligibility across workers of
different ages within a displacing firm, our claims of internal validity will be unaffected by
focusing on a subset of high-takeup firms. However, in order to consider external validity
questions, it is helpful to report which features are of particular importance in driving high
levels of takeup. Figure D.4 Panels (A) and (B) report feature importance for the RFC and
CatBoost models (a similar figure is difficult to generate for ensemble models like EE). The
values on the x-axis report the impurity-based feature importance, which increases with
more nodes splitting based on the relevant feature and larger differences in labels across
the two split groups, all else equal. The two models have quite similar rankings across
features, with petition state, county population density, the state-level A/RTAA takeup
estimate, and 4-digit SIC industry as the top 4 features in both models.

Given the similarity in performance across the three models and the fact that they
yield very similar sets of predicted high-takeup petitions, the analysis of the high-takeup
sample in the main text simply presents results based on the well-known Random Forest
Classifier (RFC).
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Figure D.3 – Confusion Matrices

(A) Confusion Matrix Against True Labels

(B) Pairwise Confusion Matrix Between Models

Notes: Panel (A) shows how each model performs against the true labels. The pairwise confusion
matrix in Panel (B) demonstrates to what extent each pair of models agrees.
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Figure D.4 – Feature Importance

(A) RFC (B) CatBoost

Notes: We consider the following features in classifying petitions as high- or low-takeup. We include petitions
with zero takeup in our model provided they have at least one observed participant in the TAPR. Petitions
without any observed participants in TAPR are dropped. For continuous variables, we impute missing values
to the mean. For categorical variables, we impute missing values to the most frequent category.

Petition-specific characteristics: pet state1 : Primary state for petition; sic4 : 4-Digit SIC Code (highest
granularity); occ codedetailed : Primary Detailed OCC Code (highest granularity); workergroup: Whether
petition included production workers, service workers, or both; pet type: Whether petition was filed by
unions, company, state career centers, or workers; determcode: Nature of certification, including direct import
competition, shifts in production to other countries, competition in upstream or downstream industries,
or partial certification; displacement reason: Reason for displacement in the petition - includes import
competition, offshoring/outsourcing, or other; country full : Source country for trade shock that justified
certification; investigator : Name of DOL officer who conducted investigation into petition; certofficer : Name
of DOL officer who certified the petition; Multi State: Indicator for whether petition covers multiple states;
Multi Estab Ind : Indicator for whether the petition covers multiple establishments; submission wait : Weeks
between submission date and determination date for the petition.

State-level characteristics: ATAA Alloc: ATAA funds allocated to the state in fiscal year of petition
determination; JobOpeningsRate: Job openings rate in state of petition; HiresRate: Hiring rate in state
of petition; QuitsRate: Quits rate in state of petition; LayoffsDischargesRate: Layoff rate in state of
petition; TotalSeparationsRate: Total separations rate in state of petition; take state ATAA TAA: Aggregate
ATAA/TAA exiters ratio in state of petition; take state JSA TAA: Aggregate Job Search Allowance/TAA
exiters ratio in state of petition; take state reloc TAA: Aggregate Relocation Allowance/TAA exiters ratio
in state of petition; RR Part : Percent of participants with Rapid Response in state of petition, included
to account for local awareness of A/RTAA; RR Pet : Percent of petitions with Rapid Response in state of
petition, included to account for local awareness of A/RTAA.

County-level characteristics: unemp rate: Unemployment rate in county of petition; emp pop:
Employment-population ratio in county of petition; cruderate: Deaths per 1,000 people in county of petition,
included to account for social welfare factors in local community; prop 50over : Proportion of working age
population over 50 and under 65 in county of petition, included to account for size of the potentially
ATAA-eligible population in the county; pov all r : Poverty rate in county of petition; medhhinc: Median
household income in county of petition; pop dens: Population density in county of petition; LFP : Labor
force participation rate in county of petition.
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E Pedagogical Search Model Proofs

Here we provide proofs of the assertions in Section 3 that wage insurance lowers the
reservation wage and increases search effort.

Effect of Wage Insurance on the Reservation Wage

To examine the effect of wage insurance on the reservation wage, begin with equation (5)
and differentiate with respect to the wage insurance subsidy rate ϕ, holding λ∗ fixed at its
optimal value by the envelope theorem. Note that the term associated with the changing
lower bound of integration in Leibnitz rule equals zero.

(1− β)
dV e(w)

dϕ
= λ∗β

∫ ∞
w

(
dV e(w)

dϕ
− dV e(w)

dϕ

)
dF (w) (12)

(1− β)
dV e(w)

dϕ
= λ∗β

∫ ∞
w

dV e(w)

dϕ
dF (w)− λ∗β(1− F (w))

dV e(w)

dϕ

[(1− β) + λ∗β(1− F (w))]
dV e(w)

dϕ
= λ∗β

∫ w0

w

dV e(w)

dϕ
dF (w) + λ∗β

∫ ∞
w0

dV e(w)

dϕ
dF (w)

The derivatives of the value of employment are as follows when w < w0.

dV e(w)

dϕ
=
∂V e(w;ϕ)

∂ϕ
=
w0 − w
1− β

dV e(w)

dϕ
=
∂V e(w;ϕ)

∂ϕ
+
∂V e(w;ϕ)

∂w

dw

dϕ
=
w0 − w
1− β

+

(
1− ϕ
1− β

)
dw

dϕ

When w ≥ w0, dV
e(w)/ϕ = 0. Plugging these into the above expression yields the following,

which implies that dw/dϕ < 0.

[(1− β) + λ∗β(1− F (w))]

(
(w0 − w) + (1− ϕ)

dw

dϕ

)
= λ∗β

∫ w0

w

(w0 − w)dF (w).

[(1− β) + λ∗β(1− F (w))] (1− ϕ)
dw

dϕ
= λ∗β

∫ w0

w

(w0 − w)dF (w)− λ∗β
∫ ∞
w

(w0 − w)dF (w)− (1− β)(w0 − w)

= λ∗β

∫ w0

w

[(w0 − w) + (w − w)] dF (w)− λ∗β
∫ ∞
w

(w0 − w)dF (w)

− (1− β)(w0 − w)

= −λ∗β
∫ w0

w

(w − w)dF (w)− λ∗β
∫ ∞
w0

(w0 − w)dF (w)− (1− β)(w0 − w)

= −λ∗β
∫ w0

w

(w − w)dF (w)− (w0 − w) [(1− β) + λ∗β(1− F (w0))]

dw

dϕ
= −

λ∗β
∫ w0

w
(w − w)dF (w) + (w0 − w) [(1− β) + λ∗β(1− F (w0))]

[(1− β) + λ∗β(1− F (w))] (1− ϕ)
< 0
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Effect of Wage Insurance on Search Effort

Begin by taking the derivative of the first-order condition for search effort in equation (6),
noting that the term associated with the changing lower bound of integration in Leibnitz
rule equals zero.

c′′(λ∗)
dλ∗

dϕ
= β

∫ ∞
w

(
dV e(w)

dϕ
− dV e(w)

dϕ

)
dF (w)︸ ︷︷ ︸

≡A

(13)

Note that the right side of this expression appears in equation (12) as well; refer to it as A.
Because search effort costs are convex, c′′ > 0, the sign of dλ∗/dϕ is determined by the sign
of A. Going back to (12),

λ∗A = (1− β)
dV e(w)

dϕ

= (w0 − w) + (1− ϕ)
dw

dϕ

= (w0 − w)−
λ∗β

∫ w0

w
(w − w)dF (w) + (w0 − w) [(1− β) + λ∗β(1− F (w0))]

(1− β) + λ∗β(1− F (w))

=
(w0 − w) [(1− β) + λ∗β(1− F (w))]− λ∗β

∫ w0

w
(w − w)dF (w)− (w0 − w) [(1− β) + λ∗β(1− F (w0))]

[(1− β) + λ∗β(1− F (w))]
(14)

Since the denominator of this expression is positive, focus on the numerator

numerator = (w0 − w)λ∗β(F (w0)− F (w))− λ∗β
∫ w0

w

(w − w)dF (w)

= λ∗β

[
(w0 − w)(F (w0)− F (w))−

∫ w0

w

(w − w)dF (w)

]
= λ∗β

[∫ w0

w

(w0 − w)dF (w)−
∫ w0

w

(w − w)dF (w)

]
= λ∗β

∫ w0

w

(w0 − w)dF (w) > 0.

Therefore, the numerator in (14) is positive, which implies that A > 0, which from equation
(13) implies that dλ∗/dϕ > 0, i.e. search effort increases with wage insurance.
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F Quantitative Analysis Details

This appendix presents details of the model and quantification exercises outlined in Section
8. We first describe the model’s structure and calibration. We then describe the solution
methods and quantitative results.

F.1 Model Setup

We model the search behavior of an individual risk-neutral worker who is displaced at t = 0
(time is discrete) from a job earning a wage w0. The worker is forward looking with a
discount factor β ∈ (0, 1). When non-employed, the worker receives a payment bt, which
may depend upon the non-employment duration t. In each period, the worker expends a
search effort λ, which comes at a convex cost c(λ) where c(λ), c′(λ), c′′(λ) > 0 ∀λ ∈ [0, 1].
The search effort is scaled such that λ is the probability of receiving an offer. Wage offers
are drawn from an exogenous distribution Ft(w), which may change over the course of the
non-employment spell to reflect duration dependence in wage offers. For simplicity, there is
no on-the-job search and employment is an absorbing state, such that an accepted job offer
is maintained in perpetuity. Given risk neutrality, we also rule out saving and borrowing, so
consumption equals income in each period.

Wage insurance-eligible workers who find reemployment at a wage below w0 receive a
subsidy covering a fraction ϕ ∈ (0, 1) of the difference between their old and new wage for a
finite number of periods Twi. The subsidy-inclusive wage w̃(w) is then

w̃(w) =

{
w + ϕ(w0 − w) if w < w0 and t ≤ Twi

w if w ≥ w0 or t > Twi

(F.1)

For a worker without wage insurance eligibility, ϕ = 0. We do not incorporate wage-insurance
benefit or eligibility caps in the model because the vast majority of participants do not hit
these caps (see footnote 22). Below, we will introduce income and payroll taxes, but we omit
them from the derivations for clarity. We assume there exists a stationary period t = T such
that Twi < T , bt = bt+1 ∀t ≥ T , and Ft(w) = Ft+1(w) ∀t ≥ T .

F.2 Optimal Search Behavior

Value of Employment: In period t, the indirect utility of employment at wage w is

V e
t (w) = w̃(w) + βV e

t+1(w). (F.2)

Since employment is an absorbing state and there is no on-the-job search, the value of
employment at a given wage is deterministic, so there is no expectation in the continuation
value. If w ≥ w0, then the worker receives no subsidy and earns w in all periods, so the
setting is stationary and V e

t (w) = V e
t+1(w) ∀t. If t > Twi, then the benefit period has expired,

the worker receives no subsidy, and again the setting is stationary. Therefore,

V e
t (w) =

w

1− β
if w ≥ w0 or t > Twi. (F.3)
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Given V e
t+1(w), we can use (F.2) to solve for V e

t (w) by backward induction. Doing so for
w < w0 and t ≤ Twi yields the following expression.

(1− β)V e
t (w) = ηtw0 + (1− ηt)w if w < w0 and t ≤ Twi (F.4)

where ηt ≡ ϕ(1− βTwi+1−t)

This expression shows that, for a forward-looking worker, the value of employment with a
subsidized wage falls toward the value of the unsubsidized wage as the wage-insurance benefit
expiry date approaches. When the benefit expiry date is far in the future, ηt ≈ ϕ and the
value of employment at w approximately equals the discounted value of the subsidized wage
w̃ = ϕw0 + (1 − ϕ)w. As the benefit expiry date approaches (i.e. as t approaches Twi + 1),
ηt approaches zero, and the value of employment at w approaches the discounted value of
the unsubsidized wage w. Combining the preceding results yields a closed-form expression
for V e

t (w):

V e
t (w) =

{
w

1−β if w ≥ w0 or t > Twi

ηtw0+(1−ηt)w
1−β if w < w0 and t ≤ Twi

(F.5)

Value of Unemployment and Optimal Reservation Wage: The indirect utility of
unemployment in period t is

V u
t = bt + max

λt

[
−c(λt) + (1− λt)βV u

t+1 + λtβ

∫ ∞
0

max{V e
t+1(w), V u

t+1}dFt(w)

]
= bt + max

λt

[
−c(λt) + βV u

t+1 + λtβ

∫ ∞
wt

(
V e
t+1(w)− V u

t+1

)
dFt(w)

]
(F.6)

where wt is the reservation wage, such that V u
t+1 = V e

t+1(wt). We can rewrite this expression
in terms of the known function V e

t by plugging in the optimal search effort λ∗t and using
V u
t+1 = V e

t+1(wt).

V e
t (wt−1) = bt − c(λ∗t ) + βV e

t+1(wt) + λ∗tβ

∫ ∞
wt

(
V e
t+1(w)− V e

t+1(wt)
)
dFt(w) (F.7)

Given values for wt and λ∗t , this expression implicitly defines wt−1 in terms of known
functions.

Optimal Search Effort: From (F.6), we can write the first order condition for optimal
search effort in t.

c′(λ∗t ) = β

∫ ∞
wt

(
V e
t+1(w)− V u

t+1

)
dFt(w) = β

∫ ∞
wt

(
V e
t+1(w)− V e

t+1(wt)
)
dFt(w) (F.8)

This expression implicitly defines the optimal search effort in t, λ∗t , given the same period’s
reservation wage, wt.
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Integral Terms: Both equations (F.7) and (F.8) include the integral term

ht(wt) ≡
∫ ∞
wt

(
V e
t+1(w)− V e

t+1(wt)
)
dFt(w). (F.9)

Given the parameterization discussed in the next section, we can solve this integral in closed
form using properties of the lognormal distribution. Appendix Section F.7 shows the solution,
which allows us to operationalize the preceding expressions.

Stationary Search Behavior and Backward Induction For t ≥ T , the setting is
stationary and the value functions and worker search behavior are constant over time. This
implies that V u

T = V u
T+1 and V e

T (w) = V e
T+1(w), which in turn imply that V e

T (wT−1) =
V e
T+1(wT ) = V e

T (wT ). Therefore (F.7) for t = T is

V e
T (wT ) = bT − c(λ∗T ) + βV e

T+1(wT ) + λ∗TβhT (wT ). (F.10)

Equation (F.8) for period T is
c′(λ∗T ) = βhT (wT ). (F.11)

Together (F.10) and (F.11), jointly define the optimal search behavior in the stationary
period. Given wT and λ∗T , equation (F.7) yields wT−1 and equation (F.8) then yields λ∗T−1.
Backward induction can then proceed to t = 1, yielding the profile of optimal search behavior
over time.

F.3 Parameterization

We assume the wage offer distribution Ft(w) is lognormal, with location parameter µt and
dispersion parameter σ. We allow µt to fall over the course of the unemployment spell to
capture the possibility of negative duration dependence in wage offers. Following Schmieder
et al. (2016), we assume that µt falls by a fixed amount δ > 0 in each period t < T , after
which it remains constant, i.e.

µt =

{
µ1 − (t− 1)δ 1 ≤ t ≤ T

µ1 − (T − 1)δ t > T.

Note that the evolution of µt is entirely determined by the initial location parameter value
µ1, the duration dependence parameter δ, and the stationary time period T . The lognormal
assumption allows us to solve the integral term ht(w) in equation (F.9) in closed form. See
Appendix Section F.7 for the relevant derivations.

We assume the unemployment payment takes on a value bUI representing UI payments
(and/or TRA payments under TAA) during the first Tui < T periods and a lower value
b < bui thereafter:

bt =

{
bui t ≤ Tui

b t > Tui.
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The cost of search effort takes the following form:

c(λt) ≡ k · λ
1+γ
t

1 + γ
,

where k, γ > 0, k sets the level of search costs, and γ is the effort elasticity of marginal cost.

F.4 Simulation

For a given set of parameters, we solve for the worker’s optimal search behavior by solving
for the reservation wage and optimal search effort in the stationary period and then using
backward induction to solve for optimal search behavior in preceding periods, as described
in Appendix Section F.2. Given that optimal search behavior, we use the model to calculate
expected wages and non-employment duration as follows.

Define empt as an indicator equal to 1 if employed in period t and zero otherwise.
Note that all time periods referenced here are shifted by one quarter relative to the “Quarter
Relative to Separation” in Figure 6 and related figures. Here, the full quarter of non-
employment following displacement is t = 0 rather than t = 1.

The probability of becoming employed in period t conditional on not being employed
previously is λt(1− Ft(wt)), and the expected wage for those newly employed in period t is

wet ≡
∫∞
wt
wdFt(w)

1− Ft(wt)
.

The expected non-employment duration is then

16∑
t=1

Pr(empt = 1|empt−1 = 0) · Pr(empt−1 = 0) · t.

Because everyone is non-employed leaving t = 0, Pr(emp0) = 0. We also construct our
non-employment duration data as if everyone leaving t = 15 non-employed is reemployed in
t = 16, so Pr(emp16 = 1|emp15 = 0) = 1. Given these restrictions, the expected non-
employment duration is

λ1(1− F1(w1)) · 1 · 1 +
15∑
t=2

λt(1− Ft(wt)) ·
t−1∏
τ=1

(1− λτ (1− Fτ (wτ ))) · t (F.12)

+ 1 ·
15∏
τ=1

(1− λτ (1− Fτ (wτ ))) · 16. (F.13)

The expected reemployment wage among those who are reemployed is then∑16
t=1 Pr(empt = 1|empt = 0) · Pr(empt−1 = 0) · wet∑16
t=1 Pr(empt = 1|empt = 0) · Pr(empt−1 = 0)

.

As in the prior expression, Pr(emp0) = 0. In contrast, we cannot assign a wage to those
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leaving t = 15 without employment, so we need to normalize by the share of people ever
reemployed. The expected reemployment wage is then

λ1(1− F1(w1)) · 1 · we1 +
∑16

t=2 λt(1− Ft(wt)) ·
∏t−1

τ=1 (1− λτ (1− Fτ (wτ ))) · wet
λ1(1− F1(w1)) · 1 +

∑16
t=2 λt(1− Ft(wt)) ·

∏t−1
τ=1 (1− λτ (1− Fτ (wτ )))

. (F.14)

For a given set of parameters, we simulate the expected non-employment duration in
(F.12) and the expected reemployment earnings in (F.14), first assuming the worker is
eligible for wage insurance and then assuming they are ineligible. This allows us to observe
the non-employment duration and reemployment earnings for ineligible workers and to
calculate the effect of wage insurance eligibility on both of these outcomes. To maintain
realism in comparing these simulated effects against those we estimate in Table 2, we
account for the fact that many workers were unaware of the RTAA wage insurance
program during our sample period by assuming that 53 percent of workers are aware of the
wage insurance program, following survey evidence on TAA-eligible workers from Dolfin
and Berk (2010). This assumption reduces the magnitude of the effect of wage eligibility by
47 percent, presuming that a worker who is eligible for wage insurance but unaware of it
does not change their search behavior or outcomes.

F.5 Calibration

When possible we externally calibrate parameters based on the policy environment or
applicable values from the literature. The exceptions are the parameters of the wage offer
distribution, µ (≡ µ1) and σ, and the cost function level parameter k. As discussed below,
we choose these parameters to target empirical moments via minimum distance. To match
the granularity of our data, we define a time period as a calendar quarter.

The worker has a quarterly discount factor of β = 0.9879, which corresponds to a yearly
discount factor of 0.95. The pre-displacement wage w0 = $11, 908, which is the observed
mean quarterly earnings 8 to 5 quarters prior to displacement in the TAA-certified sample
(Appendix Table C.1; $11, 908 = $47, 630/4). We set the quarterly UI payment bui = $5, 031
based on averages reported in Kovalski and Sheiner (2020). Since the worker is risk-neutral
and does not save, we set b = 0.88 ·bui to match the decline in consumption at the exhaustion
of UI benefits estimated in Ganong and Noel (2019). To capture the extended unemployment
insurance payments under TAA, bui is available for Tui = 10 quarters. The worker is eligible
for wage insurance for Twi = 10 quarters at a subsidy rate ϕ = 0.5. Because we observe 16
quarters of post-displacement outcomes, we set the stationary period to T = 16.

Although we omitted the relevant terms from the derivations above for clarity, it is
straightforward to incorporate relevant taxes. The worker pays an income tax rate τ inc on
earnings, subsidy payments, and UI benefits and pays an additional payroll tax rate τ pay on
earnings. Based on NBER TAXSIM, we set τ inc = 0.193 as the sum of 15% federal income
tax and 4.3% state income tax, where the latter is calculated as the mean state income
tax for a worker with income w0 in our sample of LEHD states (see footnote 27). We set
τ pay = 0.0765 to correspond to the employee’s share of payroll taxes. One might argue for a
lower payroll tax rate because Social Security benefits are linked to taxes. However, the link
is much less than one to one, even at this income level (Burkhalter and Chaplain 2023). As
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a robustness test, we set payroll taxes to zero and find the results are little changed.
We choose the cost function curvature parameter γ to match the estimate from

DellaVigna et al. (2017). We take the estimates from their model with geometric time
discounting and a single worker type (single cost function level parameter) in their Table 1
column (2), as this model most closely matches our setting. Because their estimates use
15-day bins rather than quarters, we must aggregate their estimates to the quarterly level.
We first derive the cost of achieving a given offer probability at the quarterly level given
the 15-day cost function estimates γ̂ and k̂,

c(λt) = ρk̂

[
1− (1− λt)1/ρ

]1+γ̂
1 + γ̂

,

where ρ = 6.09 is the number of 15-day bins per quarter. We then plot this aggregated
cost across the range of values of λt and then fit our quarterly cost function in (F.12) using
non-linear least squares. This process yields an estimate of γ = 3.974.

Given the well-known difficulty in estimating duration dependence separately from
differential selection by unemployment duration, we calibrate δ using a value from the
literature and consider wide-ranging alternative values for robustness. Our preferred value
δmid = 0.024 is based on the estimate of Schmieder et al. (2016) in their Table 4 column (1)
after converting their estimates from monthly to quarterly frequency (0.0240 = 0.008 · 3).
For robustness, we also consider values that double (δhigh = 0.048) and halve (δlow = 0.012)
this baseline value.

The remaining parameters, µ (≡ µ1), σ, and k are internally calibrated using
minimum distance. Specifically, we choose these parameter values by matching the
following four moments predicted by the model to their empirical moments from Table 2:
(1) the non-employment duration without wage insurance; (2) the treatment effect of WI
on non-employment duration; (3) re-employment earnings without wage insurance; (4) the
treatment effect of WI on re-employment earnings. Specifically, we use the control means
shown in Table 2 for moments (1) and (3) that correspond to wage insurance-ineligible
workers’ outcomes and the D-RD point estimates for moments (2) and (4) that correspond
to the treatment effects.

We choose parameters that minimize the sum of squared errors across the four
moments, weighting by the inverse standard error of the empirical estimate associated with
each moment in Table 2. For each model, we use 100 starting values and select the
parameters that yield the the minimum objective criterion. In practice, the parameters
nearly always converge to the same values regardless of the starting values and produce the
same objective criterion. The parameter values also lie in the interior of the choice set over
which the optimizer is permitted to search.

F.6 Results

The chosen parameters appear in Appendix Table F.1 and the associated simulated outcomes
are reported in Appendix Table F.2. In both cases, we present a different row for each model
using a different value of the duration dependence parameter δ. The results demonstrate that
the simulated outcomes are not particularly sensitive to the duration dependence parameter.
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Table F.1 – Internally Calibrated Parameter Values

δ µ σ k

δlow = 0.012 8.812 0.131 8,128
δmid = 0.024 8.736 0.200 13,052
δhigh = 0.048 8.690 0.258 21,731

Table F.2 – Empirical Estimates and Simulated Outcomes

WI-ineligible Effect of WI
non-employment reemployment non-employment reemployment

duration earnings duration earnings

Empirical estimates: 5.939 7,929 -1.002 338.2

Model outcomes:
δlow = 0.012 5.946 7,850 -0.584 -31.86
δmid = 0.024 5.947 7,845 -0.463 -40.78
δhigh = 0.048 5.945 7,813 -0.464 -61.25

Notes: In the main text we compare data and model moments using a widely cited measure of duration

dependence corresponding to δmid; here, we show robustness of our matches across various choices of δ.

Wage Insurance and Duration Dependence

In this section, we show that the quantitative effects of wage insurance depend upon the
presence of negative duration dependence in wage offers. To do so, we take the baseline
parameters in Table 3 and turn off duration dependence by setting δ = 0. We then simulate
worker search behavior and expected outcomes. The results appear in the second row of
Table F.3, with the first row replicating the simulated outcomes from the baseline model
(Table F.2, δmid) for comparison.

Table F.3 – Simulated Outcomes from Relaxing Duration Dependence

WI-ineligible Effect of WI
non-employment reemployment non-employment reemployment

Model duration earnings duration earnings

δmid = 0.024 5.947 7,845 -0.463 -40.78
δ = 0 11.76 9,255 -0.275 -36.43

Because wage offers remain much more favorable without negative duration
dependence than with it, the average non-employment duration and reemployment
earnings are substantially higher. In contrast, the effect of wage insurance eligibility on
non-employment duration is substantially smaller without duration dependence; the
magnitude falls by 40.6 percent compared to the baseline model. The effect on
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reemployment earnings also falls in magnitude by 10.7 percent, but the effect was already
very small compared to the level for ineligible workers.

To help understand why duration dependence moderates the effect of wage insurance
eligibility, Appendix Figure F.1 plots the optimal search behavior over time for workers with
and without wage insurance and for settings with and without duration dependence. Panels
(A) and (B) show the evolution of the reservation wage with baseline duration dependence
and without duration dependence, respectively. Panels (C) and (D) plot the optimal search
effort. For both pairs of figures, the y-axis is set to the same scale, so differences are
comparable. The black solid lines show the search behavior for a worker without wage
insurance eligibility and the dashed blue lines are for an eligible worker.

Figure F.1 – Search Behavior With and Without Duration Dependence

(A) Res. Wage with Duration Dependence (B) Res. Wage without Duration Dependence

(C) Search Effort with Duration Dependence (D) Search Effort without Duration Dependence

In the presence of negative duration dependence, the expected wage draw falls over
time, so both the reservation wage and optimal search effort profiles are decreasing. For
both values of duration dependence, wage insurance lowers the reservation wage during
the subsidy eligibility period. Similarly, wage insurance increases search effort during the
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eligibility period. In both cases, the effect of wage insurance is largest when there are many
periods of eligibility remaining and smaller as the eligibility window closes.

Wage insurance distorts search behavior more in the presence of negative duration
dependence because the subsidy amount increases when reemployment wages are lower.
This increase partly counteracts the incentive to reduce search effort over time as wage
offers deteriorate, leading to larger reductions in non-employment duration. Together, these
results suggest that wage insurance is likely to be particularly effective in settings with
negative duration dependence.

Robustness to Outside Option

In Appendix Table F.4, we hold fixed the calibrated parameters for each varint of the model,
with the exception of the maximum unemployment insurance duration, Twi. Rather than
the baseline value of 10 quarters, which reflects the extended benefits available through
TAA, we set Twi = 2 to reflect the 26-week benefit eligibility under standard unemployment
insurance. As discussed in the main text, in all cases, the effect of wage insurance eligibility on
the non-employment duration is smaller when the UI benefit duration is shorter. However,
these differences are very small, with effects ranging from 3.7 to 6.7 percent smaller in
magnitude across the models. The similarity of the simulated treatment effects suggests
that our empirical results are not driven by the particularly generous outside option facing
TAA-eligibile workers.

Table F.4 – Simulated Outcomes for 2 Quarters of UI

WI-ineligible Effect of WI
non-employment reemployment non-employment reemployment

Model duration earnings duration earnings

δlow = 0.012 5.602 7,835 -0.545 -33.79
δmid = 0.024 5.695 7,826 -0.444 -41.96
δhigh = 0.048 5.712 7,786 -0.447 -61.31

F.7 Closed-Form Integrals

Consider the integral ht(wt) defined in (F.9) and use properties of the lognormal
distribution to solve the relevant integral. There are two cases to consider, where
wt < w0 and t+ 1 ≤ Twi and where wt ≥ w0 or t+ 1 > Twi.

Case 1: wt < w0 and t + 1 ≤ Twi: Employment with wage wt will be subsidy-eligible in
period t+ 1, so (1−β)V e

t+1(wt) = ηt+1w0 + (1−ηt+1)wt. The wage draw w is only subsidized
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if it is below w0. Therefore,

(1− β)ht(wt) = (1− ηt+1)

∫ w0

wt

(w − wt)dFt(w) +

∫ ∞
w0

[w − (ηt+1w0 + (1− ηt+1)wt)] dFt(w)

= (1− ηt+1)

∫ w0

wt

wdFt(w)− (1− ηt+1)wt(Ft(w0)− Ft(wt))

+

∫ ∞
w0

wdFt(w)− [ηt+1w0 + (1− ηt+1)wt] (1− Ft(w0))

The remaining integrals in this expression are simple truncated lognormals. We show the
derivations for closed-form values in (F.15) after presenting the second case.

Case 2: wt ≥ w0 or t+1 > Twi: In this case, (1−β)V e
t+1(wt) = wt. As in the prior case,

the wage draw w is only subsidized if it is below w0, but these draws are rejected because
they are less than wt, so no relevant wage draws are subsidized. Therefore,

(1− β)ht(wt) =

∫ ∞
wt

(w − wt)dFt(w)

=

∫ ∞
wt

wdFt(w)− wt(1− Ft(wt)).

Combining the preceding two cases yields a piecewise definition of ht(wt).

Truncated Lognormal Solution: The object of interest is∫ a2

a1

wdF (w)

where F (w) is a lognormal distribution with parameters µ and σ. By the definition of the
lognormal distribution∫ a2

a1

wdF (w) =

∫ a2

a1

w
1

wσ
√

2π
exp

(
−(lnw − µ)2

2σ2

)
dw.

Simplify and implement a change of variables such that x = lnw, ex = w, and dw = exdx.∫ a2

a1

wdF (w) =

∫ ln a2

ln a1

1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
exdx

=

∫ ln a2

ln a1

1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2

+ x

)
dx
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Manipulating the term inside the exponential yields:

−1

2

(
x− µ
σ

)2

+ x =
2σ2x− (x2 − 2xµ+ µ2)

2σ2

=
−x2 + 2x(µ+ σ2)− µ2

2σ2

=
−x2 + 2x(µ+ σ2)− (µ+ σ2)2 − µ2 + (µ+ σ2)2

2σ2

= −(x− (µ+ σ2))
2

2σ2
+
−µ2 +

(
µ2 + 2µσ2 + (σ2)

2
)

2σ2

= −(x− (µ+ σ2))
2

2σ2
+ µ+

σ2

2

Plug this in above and let µ∗ ≡ µ + σ2 to yield the value of the integral in terms of the
normal CDF with mean µ∗and standard deviation σ.∫ a2

a1

wdF (w) =

∫ ln a2

ln a1

1

σ
√

2π
exp

(
−(x− µ∗)2

2σ2
+ µ+

σ2

2

)
dx

exp

(
µ+

σ2

2

)∫ ln a2

ln a1

1

σ
√

2π
exp

(
−1

2

(
x− µ∗

σ

)2
)
dx

exp

(
µ+

σ2

2

)
[Φµ∗,σ(ln a2)− Φµ∗,σ(ln a1)] (F.15)
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